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Over the last decade, the GFEM (also known as the eXtended finite element method
(XFEM)) has been successfully used to approximate non-smooth solutions of various en-
gineering problems, e.g., the crack propagation problem, interface problems, problems
involving voids and inclusions, etc. The GFEM is an extension of the classical finite ele-
ment method (FEM), where the approximation of the solution is obtained by augmenting
the standard finite element space SFE (piecewise polynomials) with the enrichment space
SENR. The accuracy of the GFEM depends on a smart choice of SENR, incorporating the
available information about the unknown solution. However, the associated linear system
of the GFEM could be very large, the stiffness matrix could be badly conditioned, and
the use of a direct method to solve the linear system could be difficult due to (a) the size
of the system, as well as (b) the accumulation of the round-off errors.

In this talk, we will consider the use of GFEM on an interface problem, where the interface
is a smooth and closed curve. First part of the presentation will be theoretical, where
we will establish the optimal convergence of the GFEM under various variational crimes
associated with the replacement of the smooth interface by a closed polygon and the use of
“perturbed” enrichments. We will also show that the conditioning of the GFEM depends
on the “angle” between the spaces SFE and SENR, which in turn depends on the choice
of SENR. For example, GFEMs associated with different enrichment spaces may yield the
same approximation property, say O(h), but the GFEM, with the angle between SFE and
its enrichment space SENR closest to π/2, will have the best conditioning and will yield a
linear system that is easiest to solve.

In the rest of the talk, we will present various numerical results, where we will compare
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various GFEMs, associated with various choices of the enrichment space SENR, with
respect to their (a) accuracy, (b) conditioning, and (c) computational effort associated
with solving the linear system. These results will indicate the importance of the theory
in the understanding of various issues related to GFEM.

As mentioned before, the use of a direct method to solve the linear system of GFEM,
which could be extremely large especially in 3D problems, could be prohibitive. We will
present an iterative method, employing the Schur iteration involving SFE + SENR, the
multigrid method involving only SFE and a preconditioned conjugate gradient method
involving SENR, to solve the linear system of the GFEM. Using the solution obtained
from the iterative solver, we will also report an aposteriori error estimator of the energy
norm of the error and comment on its effectivity. We will show that the angle between
SFE and SENR for a particular GFEM, known as the stable GFEM (SGFEM), is ≈ π/6
for various mesh configurations relative to the interface, and thus it is robust with respect
to accuracy, conditioning, and efficient iterative solution of the linear system.

2


