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Mechanical modeling of porous polycrystals may pose considerable challenges: Classical 
two-phase self-consistent schemes [8] cannot capture the mechanical behavior of high-
porosity materials, while discretization of each and every single crystal by finite elements 
may require disproportionate efforts in terms of CPU, or may be even impossible due to 
restricted access to the required microstructural details. As a recent remedy, continuum 
micromechanics formulations were extended as to involve an infinite number of non-spherical 
crystal phases, interacting with a spherical pore phase [4,5], see also Figure 1. Such 
formulations allow for satisfactory predictions of the (poro-)elasticity and brittle strength of 
vast classes of porous polycrystals (such as hydroxyapatite, bioactive glass-ceramics, gypsum, 
alumina, or zirconia), [7]. Additional physical phenomena appear if the polycrystals are 
hydrated. Then, probably sliding events along very thin (liquid crystalline) water layers 
forming interfaces between or within the single crystal phases entail ideal plastic behavior of 
crystals (or clusters thereof). Its occurrence in the extrafibrillar space of bone ultrastructure, 
together with brittle rupture of collagen, could well explain the strength of different bone 
samples from different species, ages, and anatomical locations [6]. This explanation, however, 
required major micromechanical developments, which we refine and extend in the present 
contribution: The sliding-related elastic-perfectly plastic constitutive law [4] is elaborated for 
a non-associated Mohr-Coulomb plasticity. Upscaling this elastoplastic behavior from the 
single crystal to the polycrystal scale is achieved through derivation of concentration and 
influence tensors for eigenstressed microheterogeneous materials [11], which itself is a 
generalization of the well-known transformation field analysis [3]. The the resulting 
multiscale-multisurface elastoplasticity problema is solved through a new variant of the 
algorithmic strategy of “return-mapping” [12].  
 
We here focus on microscopic strength properties as determined through pushing osteons out 
of pieces of Haversian lamellar bone [1]. Such tests produce an almost pure shear (micro-
)stress state at the outer boundaries of the osteons. These boundaries are called cement lines, 
and they are characterized by a very low collagen content [2], so that the RVE depicted in 
Figure 1 turns out as relevant for the cement line material. The volume fractions of crystals 
and pores inside this polycrystalline RVE follow universal composition rules valid for all 
bone tissues, and described in more detail in [10] and references therein. Ultimate loads 
bearable by osteons under punching loads as predicted by the newly developed multiscale-
multisurface elastoplastic model agree very well with corresponding experiments [1].  
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Figure 1: RVE of porous polycrystal, as found in the extrafibrillar space of bone. 
 
To our best knowledge, this is a true premiere in both multiscale elastoplasticity and bone 
mechanics, and holds the promise for significantly improved computer-aided fracture risk 
assessment in orthopedics. 
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