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Considered is a conventional second-order boundary value problem subject to the dis-
continuous Petrov Galerkin (dPG) method where best-approximation properties of the
numerical solution ξh ∈ Xh ⊂ X are guaranteed in the sense that

||x− ξh||X ≤ C dist(x,Xh) .

Apart from this commonly known fact, there are two further properties of the dPG meth-
ods, namely,

• The dPG methods qualify for a wider range of solution spaces since the functional
analytical setting requires only that the solution space X and the test space Y are
reflexive Banach spaces.

• The dPG methods are very interesting in the context of adaptive schemes as they
come with a built-in a posteriori error estimator

||x− ξh||X ≤ C ||b(x− ξh, •)||Y ∗ .

However, this error estimate suffers from the fact that it is computationally not
accessible as it contains the norm of a dual space Y ∗.

This presentation addresses the numerical analysis of the dPG methods in an alternative
approach and starts with a stability analysis for the dPG methods directly on the discrete
level. New insight into the relations between the finite-dimensional spaces and the least-
squares character of the dPG method is gained by a discussion of the discrete inf-sup
condition

0 < βh := inf
xh∈S(Xh)

sup
yh∈S(Yh)

b(xh, yh) ,
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with S(X ) := {x ∈ X | ||x||X = 1}, as it will lead to the fundamental observation that a
stable dPG method requires the boundedness of the modified discrete inf-sup condition
which reads

γh := ||Πh||−1βh ≤ inf
xh∈S(Xh)

sup
yh∈S(Mh)

b(xh, yh) .

Here, Πh is a projector onto a subspace Mh ⊂ Yh that guarantees non-degeneracy of the
bilinear form b : Xh × Yh → R on Xh.

Provided γh > 0 we further prove that the error of the numerical solution can be estimated
as follows

βh||x− ξh||X ≤ ||Π|| ||F − b(ξh, •)||Y ∗
h

+ ||F ◦ (1− Π)||Y ∗ .

In fact, this estimate holds not only for the numerical solution, but for any ξh ∈ Xh. Thus,
the dual norm from above does not appear in the principal term anymore. A posteriori
error control is addressed in the same framework which motivates adaptive mesh-refining
strategies.

For a model problem in the L2-Hilbert space setting it is proved that the low-order dPG
method is stable. A principal result from this analysis is that in order to design a stable
dPG scheme it is not necessary to increase the polynomial order. Numerical experiments
confirm the theoretical considerations.
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