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In plane elasticity, assuming negligible body forces and small strains, stresses derived from
any biharmonic function verify compatibility and equilibrium conditions, as well an elastic
constitutive law [1]. To numerically approximate the stress distribution using hybrid-
Trefftz stress finite elements [2, 3, 4], we combine regular basis functions derived from the
biharmonic Airy function. To model local effects, typically high stress gradients associated
with fracture processes, particular solutions can be derived from a set of biharmonic
functions [5] and used to enrich the finite element approximation basis and speed up
convergence. In particular, the Williams solution of a semi-infinite crack in [6] is used
to model small imperfections in plates, typically appearing in fracture benchmark tests
to induce crack propagation. The corresponding case with an elastic filler is discussed in
[7], and we use the extended solution presented therein to model crack repair. Further
solutions can be determined by the complex representation of stresses [8] together with the
Westergaard approach of a single complex stress function [9]. Of particular importance
are Westergaard local solutions given in [10] to model embedded crack behaviour, also
known as the classical Griffith problem [11].

Besides the stress field, boundary displacements are also independently approximated
in hybrid stress formulations. Simple polynomial functions can be used for this purpose
such as Tchebychev polynomials. However, we use Bernstein polynomials near stress con-
centrations on the crack tips, as they better fit the corresponding boundary displacements
when the numerical method converges. Further details on the formulation can be found
in [12].

We present developments on filled cracks, complex solutions for the Griffith problem,
and fracture propagation. Figure 1 represents an application of the method to a plate with
an edge-crack assuming K-field dominance [13]. As pointed out in [12], the stress intensity
factors [14] are computed directly from the stress approximation weights. For the open
crack case, the numerical stress intensity factor in mode I fracture is K7 = 0.6648, very
accurate when compared with K7 = 0.6646 in [15], dropping to K1 = 0.4130 for the case
of a crack filled with an elastically weak material. The method recovers K3 = 0 in both
cases.
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Figure 1: Plane stress specimen with an edge-crack. a. Geometry, external loading, Young’s modulus F
and Poisson’s ratio v. b. Discretization. c. Stress fields next to the crack tip.
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