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Local preconditioning is here applied to the Euler and Navier-Stokes equations to solve
steady compressible flow problems. We test van Leer-Lee-Roe’s [1] and Choi-Merkle’s [2]
preconditioners for the solution of inviscid and viscous steady problems, respectively. Low
Mach, transonic and supersonic regimes are solved.
Based on the idea of Chorin [3], local preconditioning was firstly set up by Turkel [4]
for incompressible and low speed compressible flow and it has traditionally been applied
together with the finite volume method. Finite element spatial discretization and explicit
time integration with a local time step is used in this work. The variational multiscale
stabilization (VMS) term is adapted to solve the preconditioned equations.
The goal of local preconditioning is the uniformization of the characteristic propagation
speeds of the system. This entails a gain in convergence speed and accuracy of the
solution. Additionally, the preconditioned system is better suited for the computation of
the VMS. Local preconditioning adds no extra computational cost. It is applied to the
set of equations before any discretization is done. It consists of transforming the original
convective jacobians and the diffusion matrices into the preconditioned ones. For low
Mach number problems where the time step is mainly determined by the acoustic speed,
the convergence acceleration when preconditioning is especially significant. This is shown
in figure 1 representing the convergence of the Naca 0012 airfoil at Mach number 0.01 for
both the inviscid and viscous cases. Local preconditioner also gives a better stability to
the solution as it is seen in figure 2 corresponding to the inviscid case.
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(a) Inviscid case (b) Viscous case at Re=100

Figure 1: Convergence history of the solution of the Naca 0012 test case with zero angle of attack at Mach
number 0.01 for both the inviscid and viscous case. Non preconditioned and preconditioned convergences
are plotted together. The same grid of 4522 tetrahedra on a domain of 30× 30m is used for the inviscid
and viscous case. The CFL number is set to 0.3 for the inviscid case and to 0.2 for the viscous case.

(a) Non preconditioned case (b) Preconditioned case

Figure 2: Mach contours after 6000 time steps of the Naca 0012 test case with zero angle of attack at
Mach number 0.01. A grid of 4522 tetrahedra on a domain of 30× 30m is used. The CFL number is set
to 0.3.
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