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A particle that has an inner fluid enclosed by a thin elastic membrane is called a capsule.
This structure is found in red blood cells and polymer coated medicines. Many studies
have been conducted to reveal the rheology of capsule suspensions for industrial and
biomedical applications. In a real system, there is a size distribution of capsules with
a capsule suspension. However, few studies have focused on the effect of such a size
difference on the rheology of capsule suspensions. In this study, we numerically investigate
suspensions containing capsules of two different sizes under simple shear flow.

We consider a capsule suspension under Stokes flow. We use a method developed by
Matsunaga et al.[1], which applies GPU computing to a method coupling of the finite
element method and boundary element method proposed by Walter et al.[2]. The
membrane obeys the Skalak constitutive law, and bending moments in the membrane
ignored. The capillary number Ca = µf γ̇a/Gs is a non-dimensional number which escribes
the ratio between the viscous, and elastic forces where µf is the viscosity of the fluid, γ̇
is the shear rate and Gs is the shear elastic modulus of the membrane. We fix Ca of
large and small capsules as Cal = Cas = 1.0. Under a given volume fraction of capsules
ϕ, we change the ratio of small capsules to total capsules Rϕ = ϕs/ϕ or the radius ratio
of a small capsule to a large capsule Ra = as/al. We show examples of the simulation
in Figure 1. The apparent shear viscosity η can be described by η = µf + µp, where
µp = Σp

12/γ̇ is the increased viscosity due to the existence of capsules. Here, Σp
ij is the

particle stress tensor, and can be expressed by

Σp
ij =
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where V is the volume of the computational domain, xi is a position coordinate, qi is a
point force, N is the number of capsules in the domain and An is the surface area of a
capsule membrane.

Figure 2 shows µp for Ra = 0.5 as a function of Rϕ, where µ
ref
p is the value at Rϕ = 0.0 and

angle brackets denote the time-averaged value. Because Ca is the same for both large and
small capsules, monomodal cases(Rϕ = 0.0, 1.0) show the same value. On the other hand,
in bimodal suspensions, µp drops by a few percent, and this tendency becomes stronger
at higher values of ϕ. Figure 3 shows µp as a function of Ra for Rϕ = 0.5. We found
that the reduction of µp in bimodal suspensions becomes larger when Ra is smaller; for
example, it decreases by approximately 10% at Ra = 0.3.
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Figure 1: The snapshots of the numerical result for ϕ = 0.4. (a)Rϕ = 0.0. (b)Rϕ = 0.25. (c)Rϕ = 0.5.
The bright zone is the original computational domain.
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Figure 2: The fluctuation component of the shear
viscosity µp as a function of Rϕ. Each value is
normalized by the value at Rϕ = 0.0, and Ra is
fixed at 0.5.
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Figure 3: The fluctuation component of the shear
viscosity µp as a function of Ra. Each value is
normalized by the value at Ra = 0.0, and Rϕ is
fixed at 0.5.
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