RHEOLOGICAL ANALYSIS OF CAPSULE SUSPENSIONS CONTAINING DIFFERENT SIZE CAPSULES

Hiroki Ito1,*, Yohsuke Imai2, Daiki Matsunaga2, Toshihiro Omori1, Takami Yamaguchi1 and Takuji Ishikawa2

1 Department of Biomedical Engineering, Tohoku University, 6-6-01, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan, ito@pfsl.mech.tohoku.ac.jp
2 Department of Bioengineering and Robotics, Tohoku University, 6-6-01, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan, yimai@pfsl.mech.tohoku.ac.jp

Key words: Bimodal suspension, Apparent viscosity, Finite element method, Boundary element method, GPGPU.

A particle that has an inner fluid enclosed by a thin elastic membrane is called a capsule. This structure is found in red blood cells and polymer coated medicines. Many studies have been conducted to reveal the rheology of capsule suspensions for industrial and biomedical applications. In a real system, there is a size distribution of capsules with a capsule suspension. However, few studies have focused on the effect of such a size difference on the rheology of capsule suspensions. In this study, we numerically investigate suspensions containing capsules of two different sizes under simple shear flow.

We consider a capsule suspension under Stokes flow. We use a method developed by Matsunaga et al.[1], which applies GPU computing to a method coupling of the finite element method and boundary element method proposed by Walter et al.[2]. The membrane obeys the Skalak constitutive law, and bending moments in the membrane ignored. The capillary number $Ca = \mu_f \dot{\gamma} a/G_s$ is a non-dimensional number which escribes the ratio between the viscous, and elastic forces where μ_f is the viscosity of the fluid, $\dot{\gamma}$ is the shear rate and G_s is the shear elastic modulus of the membrane. We fix Ca of large and small capsules as $Ca_l = Ca_s = 1.0$. Under a given volume fraction of capsules ϕ, we change the ratio of small capsules to total capsules $R_\phi = \phi_s/\phi$ or the radius ratio of a small capsule to a large capsule $Ra = a_s/a_l$. We show examples of the simulation in Figure 1. The apparent shear viscosity η can be described by $\eta = \mu_f + \mu_p$, where $\mu_p = \Sigma_{ij}^p/\dot{\gamma}$ is the increased viscosity due to the existence of capsules. Here, Σ_{ij}^p is the particle stress tensor, and can be expressed by

$$\Sigma_{ij}^p = \frac{1}{V} \sum_{n=1}^{N} \int_{A_n} \left\{ \frac{1}{2} (x_i q_j + q_i x_j) \right\} dA_n,$$

(1)
where V is the volume of the computational domain, x_i is a position coordinate, q_i is a point force, N is the number of capsules in the domain and A_n is the surface area of a capsule membrane.

Figure 2 shows μ_p for $Ra = 0.5$ as a function of R_ϕ, where μ_p^{ref} is the value at $R_\phi = 0.0$ and angle brackets denote the time-averaged value. Because Ca is the same for both large and small capsules, monomodal cases ($R_\phi = 0.0, 1.0$) show the same value. On the other hand, in bimodal suspensions, μ_p drops by a few percent, and this tendency becomes stronger at higher values of ϕ. Figure 3 shows μ_p as a function of Ra for $R_\phi = 0.5$. We found that the reduction of μ_p in bimodal suspensions becomes larger when Ra is smaller; for example, it decreases by approximately 10% at $Ra = 0.3$.

Figure 1: The snapshots of the numerical result for $\phi = 0.4$. (a)$R_\phi = 0.0$. (b)$R_\phi = 0.25$. (c)$R_\phi = 0.5$. The bright zone is the original computational domain.

Figure 2: The fluctuation component of the shear viscosity μ_p as a function of R_ϕ. Each value is normalized by the value at $R_\phi = 0.0$, and Ra is fixed at 0.5.

Figure 3: The fluctuation component of the shear viscosity μ_p as a function of Ra. Each value is normalized by the value at $Ra = 0.0$, and R_ϕ is fixed at 0.5.

REFERENCES
