RHEOLOGICAL ANALYSIS OF CAPSULE SUSPENSIONS CONTAINING DIFFERENT SIZE CAPSULES

Hiroki Ito^{1,*}, Yohsuke Imai², Daiki Matsunaga², Toshihiro Omori¹, Takami Yamaguchi¹ and Takuji Ishikawa²

 ¹ Department of Biomedical Engineering, Tohoku University, 6-6-01, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan, ito@pfsl.mech.tohoku.ac.jp
² Department of Bioengineering and Robotics, Tohoku University, 6-6-01, Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan,

vimai@pfsl.mech.tohoku.ac.jp

Key words: Bimodal suspension, Apparent viscosity, Finite element method, Boundary element method, GPGPU.

A particle that has an inner fluid enclosed by a thin elastic membrane is called a capsule. This structure is found in red blood cells and polymer coated medicines. Many studies have been conducted to reveal the rheology of capsule suspensions for industrial and biomedical applications. In a real system, there is a size distribution of capsules with a capsule suspension. However, few studies have focused on the effect of such a size difference on the rheology of capsule suspensions. In this study, we numerically investigate suspensions containing capsules of two different sizes under simple shear flow.

We consider a capsule suspension under Stokes flow. We use a method developed by Matsunaga *et al.*[1], which applies GPU computing to a method coupling of the finite element method and boundary element method proposed by Walter *et al.*[2]. The membrane obeys the Skalak constitutive law, and bending moments in the membrane ignored. The capillary number $Ca = \mu_f \dot{\gamma} a/G_s$ is a non-dimensional number which escribes the ratio between the viscous, and elastic forces where μ_f is the viscosity of the fluid, $\dot{\gamma}$ is the shear rate and G_s is the shear elastic modulus of the membrane. We fix Ca of large and small capsules as $Ca_l = Ca_s = 1.0$. Under a given volume fraction of capsules ϕ , we change the ratio of small capsules to total capsules $R_{\phi} = \phi_s/\phi$ or the radius ratio of a small capsule to a large capsule $Ra = a_s/a_l$. We show examples of the simulation in Figure 1. The apparent shear viscosity η can be described by $\eta = \mu_f + \mu_p$, where $\mu_p = \sum_{12}^p / \dot{\gamma}$ is the increased viscosity due to the existence of capsules. Here, \sum_{ij}^p is the particle stress tensor, and can be expressed by

$$\Sigma_{ij}^{p} = \frac{1}{V} \sum_{n=1}^{N} \int_{A_{n}} \left\{ \frac{1}{2} \left(x_{i} q_{j} + q_{i} x_{j} \right) \right\} dA_{n}, \tag{1}$$

where V is the volume of the computational domain, x_i is a position coordinate, q_i is a point force, N is the number of capsules in the domain and A_n is the surface area of a capsule membrane.

Figure 2 shows μ_p for Ra = 0.5 as a function of R_{ϕ} , where μ_p^{ref} is the value at $R_{\phi} = 0.0$ and angle brackets denote the time-averaged value. Because Ca is the same for both large and small capsules, monomodal cases ($R_{\phi} = 0.0, 1.0$) show the same value. On the other hand, in bimodal suspensions, μ_p drops by a few percent, and this tendency becomes stronger at higher values of ϕ . Figure 3 shows μ_p as a function of Ra for $R_{\phi} = 0.5$. We found that the reduction of μ_p in bimodal suspensions becomes larger when Ra is smaller; for example, it decreases by approximately 10% at Ra = 0.3.

Figure 1: The snapshots of the numerical result for $\phi = 0.4$. (a) $R_{\phi} = 0.0$. (b) $R_{\phi} = 0.25$. (c) $R_{\phi} = 0.5$. The bright zone is the original computational domain.

Figure 2: The fluctuation component of the shear viscosity μ_p as a function of R_{ϕ} . Each value is normalized by the value at $R_{\phi} = 0.0$, and Ra is fixed at 0.5.

Figure 3: The fluctuation component of the shear viscosity μ_p as a function of Ra. Each value is normalized by the value at Ra = 0.0, and R_{ϕ} is fixed at 0.5.

REFERENCES

- [1] D. Matsunaga, Y. Imai, T. Omori, T. Ishikawa and T. Yamaguchi. submmited.
- [2] J. Walter, A.-V. Salsac, D. Barthès-Biesel and P. Le Tallec. Coupling of finite element and boundary integral methods for a capsule in a Stokes flow. *int. J. Numer. Meth. Eng.* 83, 829-850, 2010.