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This work is devoted to the periodic homogenization of the wave equation in a one-
dimensional open bounded domain where the time-independent coefficients are ε - peri-
odic with small period ε > 0. Corrector results for the low frequency waves have been
published in [2]. These works were not taking into account fast time oscillations, so the
models reflect only a part of the physical solution. In [1], an homogenized model has been
developed to cover the time and space oscillations occurring both at low and high frequen-
cies. Unfortunately, the boundary conditions of the homogenized model were not found.
Therefore, establishing the boundary conditions of the homogenized model is critical and
is the goal of the present work.

For a bounded open set Ω = (0, α) and a finite time interval I = [0, T ) ⊂ R+, we consider
the wave equation with Dirichlet boundary conditions, ρ
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where ε > 0 denotes a small parameter intended to go to zero. The two functions aε =
a
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and ρε = ρ
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are Lipschitzian, positive and periodic with respect to a lattice of

reference cell εY ⊂ R.

The wave equation is written under the form of a system with unknown the vector of
first-order derivatives U ε :=

(√
aε∂xu

ε,
√
ρε∂tu

ε
)
. For k ∈ R, the modulated two-scale

transform W ε
k is applied to the solution U ε as in [1]. For n ∈ N∗ and k ∈ R, the nth

eigenvalue λk
n of the Bloch wave problem with k−quasi-periodic boundary conditions

satisfies λk
n = λ−k

n , in addition λk
n may be double for k ∈ Z/2, so the corresponding waves

are oscillating with the same frequency. The homogenized model is thus derived for pairs
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of the fibers {−k, k} if k ̸= 0 and for the fiber {0} otherwise for which the boundary
conditions are derived.

For any fixed K ∈ N∗, using the definition of the set L∗
K of fibers introduced in [1] and

YK = KY , the weak limit U (t, τ, x, y) of
∑

k∈L∗
K

W ε
kU

ε in L2(I × Λ× Ω× Y K)
2 can be

decomposed as

U (t, τ, x, y) = UH (t, x, y) +
∑
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n (t, x) e

2iπsnτekn (y). (2)

The term UH is the low frequency part. The other terms represent the high frequency
waves where ekn is a Bloch mode and Uk

n is a solution of a system of macroscopic equations
which boundary conditions constitute one of the main contributions of this work. We
deduce an approximation of the physical solution,
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The figures below represent numerical results.
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Figure 1: Left: Space distribution of two-scale approximation of the first component Uε
1 of Uε at t=0.466.

Right: Relative error between the physical solution Uε
1 and its approximation in L2(Ω) - norm is 7e-3.
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