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Momentum-based time integration methods for dynamic systems have received extensive
research attention over the last two decades, starting with the introduction of a particular
format for representation of the internal forces, [1], and its extension to general potenrials
by a secant representation [2, 3]. In spite of very attractive properties, e.g. in connection
with constrained problems in multibody dynamics, these algorithms have remained largely
within the academic community. A possible reason is that the standard format makes
use of a special representation of the internal force, using the mean states of stress and
strain gradient. This ties the method to a special format of the underlying equations, and
requires special computation at the element level of the combined mean state properties.
The present paper proposes a simple alternative representation of the internal force in
terms the arithmetic mean value plus a correction in terms of the increment of the tangent
stiffness matrix. The tangent stiffness matrix is typically part of the iteration process, and
thus the present formulation is in global form and does not impose any need for special
computations, nor any assumption about the form of the energy potential.

Let the equations of motion for a system with displacement vector u(t) be given by

Mü+Cu̇+ g(u) = f(t), (1)

where M is the mass matrix, while g(u) and f(t) is the internal and external force vec-
tors, respectively. The linear viscous damping matrix C is mainly included to emphasize
the structure of the equations. A consistent algorithmic damping may be introduced as
indicated in [4]. After introduction of the velocity v = u̇ as an independent variable,
integration of the corresponding state-space equations gives
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A second order accurate algorithm is obtained by representing the velocity and force
integrals by their arithmetic mean values v̄ and f̄ , while the internal force integral is
represented by its equivalent value g∗. This gives the following discretized form of the
equations,
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where h is the time increment. The energy balance equation is obtained by pre-multiplication
with [uT ,vT ]. It has the form
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h
∆uTC∆u , (4)

provided that the equivalent internal force satisfies the energy increment relation ∆uTg
∗
=

∆G(u). For an energy potential G(u) in the form of a quartic polynomial in the displace-
ment components u the equivalent internal force g

∗
can be expressed as

gq = 1
2

[

gn+1 + gn

]

−

1
12
∆K∆u . (5)

This result gives fourth-order accurate conservation of the energy for general energy po-
tential, while full energy conservation is obtained by introducing the secant representation

g∗ = gq +
(Gn+1 −Gn)−∆uTgq

∆uT∆u
∆u . (6)

It is verified by direct substitution that this secant representation satisfies the energy
increment condition. The last term vanishes for any fourth-degree energy potential.

The discrete equations (3) are easily arranged in a form where the unknown velocity vn+1

is eliminated, leaving a nonlinear equation in the displacement un+1, followed by a simple
substitution for vn+1. In the present format all quantities in the discretized equations of
motion are given in global form, reducing the computational effort to that of a similar
central difference form, while retaining full energy conservation.
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