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Christian Schröppel∗,1 and Jens Wackerfuß1

1 Technische Universität Darmstadt, Division of Solid Mechanics, Franziska-Braun-Str. 7,
64287 Darmstadt, Germany. e-mail: schroeppel@mechanik.tu-darmstadt.de,

wackerfuss@mechanik.tu-darmstadt.de, URL: mismo.tu-darmstadt.de

Key words: Model order reduction, Logarithmic shape functions, Lie groups, Multigrid
methods.

To obtain good convergence characteristics in multigrid applications, the coarse grid al-
gorithm must operate efficiently on the low-frequency part of the approximation error.
At the same time, its influence on the high frequencies must be minimized.

In order to realize these objectives, we propose a finite element model that focuses on
the approximation of the low-frequency part of a deformation, using a small number of
degrees of freedom.

In contrast to the standard Ritz-Galerkin approach, the (internal and external) degrees of
freedom are given as coefficients of shape functions on a Lie algebra, i.e. on the logarithmic
space, allowing to reduce the number of finite elements and total degrees of freedom
without incurring the locking phenomena associated with linear shape functions. Choosing
appropriate basis vectors on the Lie algebra and suitable shape functions is of crucial
importance for the performance of the model.

In the case of a two-dimensional Bernoulli beam, the proposed model employs shape
functions defined on the Lie algebra C oid gl (1,C). These shape functions induce a tight
coupling of translations, rotations and dilatations within a single finite element. Given
the deformation (1), the similarity transformations S (ξ) ∈ gl (1,C) and the translations
u (ξ) ∈ C related to a neighborhood of a point x (ξ) on the neutral axis jointly depend on
a small set of degrees of freedom.(
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In the limit S → 0, implying eS → I and S−1
(
eS − I

)
→ I, the model collapses to the

standard finite element approach.
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For different load conditions, we obtain approximations based on a limited number of
up to eight parameters that closely match the solutions resulting from standard finite
element models employing a much larger number of degrees of freedom. We also explore
the three-dimensional case and applications of the method for shell models.
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