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In this work, we study the existence and stability of time-periodic oscillations in a chain of linearly
coupled impact oscillators reminiscent of a model analyzed in [2], for rigid impacts without energy
dissipation. We introduce a numerical method allowing to compute branches of time-periodic so-
lutions when an arbitrary number of nodes undergo rigid impacts. For this purpose, we reformulate
the search of periodic solutions as a boundary value problem incorporating unilateral constraints.
We illustrate this numerical approach by computing some families of nonlinear spatially localized
modes (breathers) and extended modes.

The dynamics is described by the following complementarity system

ÿn + yn − γ (∆y)n = λn, n ∈ Z, (1)

0 ≤ λ ⊥ (y + 1l) ≥ 0, (2)

if ẏn(t−) < 0 and yn(t) = −1 then ẏn(t+) = −ẏn(t−), (3)

where (∆y)n = yn+1 − 2 yn + yn−1 defines a discrete Laplacian operator, 1l denotes the constant
sequence with all terms equal to unity and γ ≥ 0 is a parameter. Non-dissipative impacts occur
for y(t) = −1 and give rise to impulsive reaction forces λ(t). We look for T -periodic solutions even
in time, and assume each particle undergoes at most one impact during each period of oscillation.
Introducing the splitting y = (y(0), y(1), y(2)) corresponding to Z = I0 ∪ I1 ∪ I2, the above system
can be reformulated as a boundary value problem on a half-period interval (0, T/2),

ÿn + yn − γ (∆y)n = 0, n ∈ Z, t ∈ (0, T/2), (4)

with boundary conditions

ẏ(i)(0) = 0 for i ∈ I0 ∪ I1, y(2)(0) = −1l, ẏ(i)(T/2) = 0 for i ∈ I0 ∪ I2, y(1)(T/2) = −1l, (5)

and constraint
y(t) + 1l > 0, t ∈ (0, T/2). (6)

We solve this problem numerically for a chain of N = 100 oscillators with periodic boundary
conditions. We use a shooting method, i.e. determine z = (y(0)(0), y(1)(0), ẏ(2)(0)) ∈ RN such
that the three boundary conditions of (5) at t = T/2 are satisfied. This requires to solve a linear
system for z obtained through time-integration of the linear ODE (4) (the case of nonlinear local
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Figure 1: Computation of different periodic so-
lutions for T ≈ 4.7. The left column displays
particle positions at t = 0 for γ = 0.16, for two
breather solutions with I2 = {50}, I1 = ∅ (site-
centered breather, top panel) and I2 = {49}, I1 =
{50} (bond-centered breather, middle panel), and
for a nonlinear normal mode with spatial period
two and I0 = 2Z, I1 = ∅ (bottom panel). These
solutions can be continued for γ ∈ [0, γmax) with
γmax ≈ 0.19. The site-centered breather is lin-
early stable for γ < γc ≈ 0.13, after which it be-
comes unstable (the top right panel displays the
moduli of the corresponding Floquet eigenvalues).
The time evolution of the position and velocity of
the impacting particle (n = 50) is illustrated over
a few periods for γ = 0.16 (right column, middle
and bottom panels). The bond-centered breather
and nonlinear normal mode are both unstable for
all values of γ.

or interaction potentials could be addressed similarly using a Newton method). The constraint (6)
is checked a posteriori. Solution branches are continued for fixed values of T , varying the linear
stiffness γ and starting from the uncoupled (or “anticontinuum”) limit γ = 0 [1]. In this limit,
for all fixed T ∈ (π, 2π), a choice of impacting particles and phases (determined by I1, I2) selects
a unique solution which can be continued up to some maximal value of γ. The linear stability
of periodic solutions is analyzed through the eigenvalues of an associated monodromy matrix.
To perform this computation, we integrate (1)-(2)-(3) numerically using the Siconos software
for nonsmooth dynamical systems [3]. As an example, we describe in Figure 1 three families
of periodic solutions obtained with this method, namely two breather solutions (site-centered or
bond-centered) and a spatially extended solution (nonlinear normal mode). The computation of
periodic solutions based on the above approach is much more effective than numerical continuation
of periodic solutions based on compliant models. In the latter case, impacts are described by
smooth nonlinear Hertzian type potentials leading to stiff ODE and costly numerical continuation.
Future extensions of this work will include an analytical continuation and stability analysis based
on the same approach, the inclusion of dissipative impacts and forcing, and the application of the
method to more complex finite-element models of continuous systems under impacts.
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