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Numerical simulations of time dependent flow and transport processes in heterogeneous
porous media are desirable in several fields of natural sciences and in a large number of
branches of technology, for instance, in environmental engineering and hydrology, in oil
and gas exploration and recovery or in material sciences and pharmaceutical technology.
The accurate numerical approximation of such flow and transport phenomena continues
to be a challenging task. The applicability and value of the mixed finite element method
(MFEM) and its hybrid variant (MHFEM) have been demonstrated for a wide range of
problems. While the discretization in space involves a significant set of complexities, the
temporal approximation of transient flow and transport in porous media has received
relatively little interest and have most often been limited to traditional non-adaptive low
order methods. Rigorous studies of higher order time discretizations are still missing. The
Galerkin method is a known approach to solve time dependent problems [2, 3, 4]. So far,
this variational approach has been used rarely in practice despite of its significant advan-
tages like a uniform space-time approach for theoretical analyses, the natural construction
of higher order methods, the applicability of duality based a posteriori error estimation
techniques [1] with automatic mesh adaptation and the provision of a framework suitable
for variational multiscale methods. One reason for this might be the higher complexity
of the resulting algebraic block matrix systems; cf. (1).

In this contribution we present and analyze variational space-time approximations of a
prototype convection-diffusion-reaction model. For the discretization in space mixed finite
element methods of Raviart-Thomas type are used. The temporal variable is discretized
by at least A-stable continuous and discontinuous Galerkin methods. Stability and error
analyses of the schemes as well as implementational issues are addressed. The numerical
performance properties are illustrated by test problems of practical interest; cf. Fig. 1.

More precisely, for a nonstationary diffusion problem written in mixed form, we consider
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Figure 1: Layered anisotropic medium and computed concentration profile and flux magnitude (from left
to right) for pure diffusion problem.

and study the following continuous variant of our variational time discretization schemes:
Find uτ ∈ X r(W ) and qτ ∈ X r(V ) such that u(0) = u0 and∫ T

0

〈∂tuτ +∇ · qτ , wτ 〉 dt =

∫ T

0

〈f, wτ 〉 dt ,
∫ T

0

{
〈D−1qτ ,vτ 〉 − 〈uτ ,∇ · vτ 〉

}
dt = 0

for all wτ ∈ Yr−1(W ), vτ ∈ Yr−1(V ).

Here, 〈·, ·〉 = 〈·, ·〉L2(Ω). X r(W ), Yr−1(V ) denote spaces of piecewiese polynomial functions

in time, X r(X) := {u ∈ C(Ī; X)
∣∣ u|In ∈ Pr(In; X) , ∀n} and Yr(X) := {w ∈

L2(I; X) | w|In ∈ Pr(In; X) , ∀n}, where Pr(J ; X) :=
{
u(t) =

∑r
j=0 ξ

j
n t

j , ξjn ∈ X , ∀j
}

.
A discontinuous counterpart of this semidiscretization in time is also studied. By an
appropriate choice of test basis functions we recast the variational problem as a time
marching scheme. Then, we apply the Gaussian quadrature rule to the integration in
time and solve the resulting variational problem in a finite dimensional LBB-stable pair
of mixed finite element spaces Wh ⊂ W and V h ⊂ V . For instance, in the case r = 2 this
yields a block matrix system of the following structure that has to be solved for each of
the time intervals In = (tn−1, tn], n = 1, . . . , N :

A 0 −B 0

0 A 0 −B
τn
2 B> 0 α̂1,1G α̂1,2G

0 τn
2 B> α̂2,1G α̂2,2G



Q1
h

Q2
h

U1
h

U2
h

 =


0

0

F̃
1

F̃
2

 (1)
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