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The study of stenotic flow is very helpful in understanding the occurrence and development 

of many cardiovascular and cerebrovascular diseases, and thus is helpful in the diagnosis and 

treatment of these diseases. Our focus is on the issue how to systemically model the relation 

between the pressure drop and the flow rate in terms of the stenosis severity and the 

convective momentum transport. 

Numerical simulations of simplified 

stenotic flows [Fig. 1] are performed by 

using a three-dimensional voxel-based 

simulator[1], and the results based on 

Lorentz’s reciprocal theorem[2] and 

lubrication theory[3] are analyzed. The 

effect of stenosis severities with a range of [10%, 80%] and Reynolds numbers with a range 

of [1-1000], which includes most of the arteries and arterioles in human body, on the pressure 

drop is considered. We derive an identity accounting for pressure drop mechanism, and 

demonstrate its validity for a computation of a steady flow. 

Pressure drop in stentotic flows 

If we call the solutions u, p as the NS (Navier-Stokes) solutions and u*, p* as the Stokes 

solutions, the Lorentz’s reciprocal theorem[4] can be represented as 
(∇𝒖): 𝝈∗ = (∇𝒖∗): 𝝈.                                                         (1) 

By jointly deducing the Eq.(1) and the continuity and momentum equations of two flows, we 

arrive at an identical relation 
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Note that in the Stokes flow, the pressure drop ∆𝑃∗ is linear with respect to the flow rate 𝑄∗. 
When ∆𝑃∗is controlled to be 𝑄∗ = 𝑄, the difference ∆𝑃 − ∆𝑃∗  can be determined from the 

Fig.1 Simplified geometric model for stenosis vessel 



ChangJin JI, Kazuyasu Sugiyama, Shigeho Noda, Ying He and Ryutaro Himeno. 

 2 

spatial distribution of the velocity u, u* as indicated in Eq. (2). 
The computational results showed that t the values of W2 and W5, which are caused by the 

nonsymmetrical distribution of velocity at the two ends, are always much less than other 

terms, which is because that Dij
* are equal at both sides due to the symmetry of Stokes flow 

and are almost 0 in the axis direction. While the difference of velocities is much less than Re, 

thus W2 can be ignored. The W6 appears to be small at low Reynolds number, but increases 

significantly with the increase of Reynolds number when Re is larger than 200. It is seen that 

W6 is almost independent of the stenosis severity. Hence, when we set Q=Q*, Eq. (2) can be 

simplified as 
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which means the pressure drop of NS flow through a stenosis tube can be decomposed into 

three parts. The first part is the pressure drop of Stokes flow through a stenosis tube and is 

mainly caused by viscous effect. The second part named as ΔPV is the volume integral of 

−𝑢𝑖𝑢𝑗𝐷𝑖𝑗
∗
 within the whole fluid field and the third part named as ΔPS is the integral of 

𝑢𝑖𝑢𝑗𝑢𝑗
∗ at two ends of tube. The last two terms are both caused by the uneven distributions of 

velocity on the both sides of stenosis region due to the presence of convective term in the 

Navier-Stokes Equations. The Eq. (3) offers a new method to analyze the pressure drop in 

stenotic flows, and the effects of these terms will be analyzed in details. 

Stokes flow in stenosis tubes 

The pressure drop of Stokes flow through a moderate stenosis can be approximately 

represented as  
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The variation of pressure drop obtained from the lubrication theory and Simulation results 

show a good agreement at mild and moderate stenosis, however there appears relatively 

obvious difference between them at higher stenosis severity. 

Therefore, by adding a factor expressed as a function of stenosis severity St, the lubrication 

equation (12) can be modified as 
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The modification reduces the error of pressure drop produced by lubrication theory from 6% 

to below 0.1%. 
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