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Many problems in science and engineering require the solution of partial differential equa-
tions on large computational domains or very fine meshes. Even on modern hardware,
standard discretization techniques for solving these problems can require many hours or
even days of computation, which makes these approaches inapplicable for many-query
situations like, e.g., design optimization, where the same problem has to be solved many
times for different sets of parameters.

The Reduced Basis Method (RB) is by now a well-established tool for the model order
reduction of problems formulated as parameterized partial differential equations (see e.g.
[1, 2]). In an “offline phase”, a given high-dimensional discretization is solved for appro-
priately selected parameters and a reduced subspace is constructed as the span of these
solution snapshots. In a later “online phase”, the problem can be solved efficiently for
arbitrary new parameters via Galerkin projection onto the precomputed reduced space.

One crucial ingredient for the application of RB schemes is the availability of an a pos-
teriori error estimator to reliably estimate the error introduced by the reduction process.
Such an estimator is also required by the weak greedy algorithm, which has been shown to
be optimal for the generation of the reduced spaces [3], to efficiently perform an exhaustive
search of the parameter space for parameters maximising the reduction error.

For affinely decomposed elliptic problems, a residual based error estimator is widely used
[1, sec. 4.3]. However, as observed by several authors [1, pp. 148–149][4][5], the im-
plementation of this estimator shows poor numerical accuracy due to round-off errors
which can render the estimator unusable when the given problem is badly conditioned
and small reduction errors are required. Using calculations with higher-precision floating
point numbers has poor computational performance. An alternative algorithm to evaluate
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the estimator, which is numerically stable, has been proposed in [6, 7], which however also
comes at the price of either a more expensive “online phase” and/or increased complexity
of offline computations.

In this talk we propose a new algorithm
based on representing the residual w.r.t. a
dedicated orthonormal basis, which is both
easy to implement and comes with no ad-
ditional online cost as well as small addi-
tional offline overhead. We will perform a nu-
merical analysis of our algorithm comparing
it with the standard one and present some
numerical examples to demonstrate its per-
formance. Moreover, we will indicate that
choosing a smaller basis for representing the
residual might even lead to faster estimator
evaluations compared to the standard algo-
rithm without sacrificing its high accuracy.
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Figure 1: Maximum error vs. estimated errors for an
elliptic “2x2-Thermalblock Problem” with parameter
space [0.1, 1]4.
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