DISCONTINUOUS FINITE ELEMENT FORMULATIONS
FOR MISCIBLE VISCOUS FINGERING PROBLEMS

Yoisell R. Núñez, Cristiane O. Faria, Abimael F.D. Loula and Sandra M.C. Malta

LNCC, Laboratório Nacional de Computação Científica, Av. Getúlio Vargas 333, P.B. 95113, CEP: 25651-075, Petrópolis, RJ, Brazil, {yoisell,cofaria,aloc,smcm}@lncc.br

Key words: Miscible displacements, Stabilized finite element methods, discontinuous hybrid formulations, Viscous fingering.

We present discontinuous stabilized finite element approaches to investigate the dynamical evolution of two-dimensional miscible flows taking in porous media into account the appearance of viscous fingers and their influence on the breakthrough time of the injected fluid. The problem is modelled by a coupled system of nonlinear partial differential equations. Through a backward finite difference scheme in time, a sequentially implicit time-stepping algorithm that uncouples the system at each time-step is defined [1, 3]. A stabilized dual hybrid mixed method (SDHM) is employed for computing velocity field and pressure approximations, involving the conservation of mass and Darcy’s law. Finally, the SUPG (Streamline Upwind Petrov-Galerkin) method is used to approximate the concentration equation. As demonstrated by the authors [2] the SDHM is locally conservative and is free from any compromise between the finite element approximation spaces. Moreover, in contrast with continuous finite element methods [3], the SDHM formulation is flexible for implementing hp–adaptivity approaches, making it a efficient strategy in studying flow patterns in oil reservoirs.

Robustness and accuracy will be illustrated by simulations of viscous fingering in quarter five-spot arrangements to homogeneous and heterogeneous porous media. This proposal is a extension of the methodology developed in [2] to miscible displacements with high adverse mobility ratios.

REFERENCES
