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One of the most used seismic imaging methods is the full wave inversion (FWI) method
which is an iterative procedure whose algorithm is the following. Starting from an initial
velocity model, a) one computes the solution of the wave equation for the N sources of
the seismic acquisition campaign and, b) one evaluates, for each source, a residual defined
as the difference between the wavefields recorded at receivers on the top of the subsurface
during the acquisition campaign and the numerical wavefields. Then, c) one computes
the solution of the wave equation using the residuals as sources, and d) one updates the
velocity model by cross correlation of images produced at steps a) and c). Finally, the
different steps a) to d) are repeated until convergence of the velocity model is achieved.
We then have to solve 2N wave equations at each iteration. The number of sources, N , is
usually large (about 1000) and the efficiency of the inverse solver is thus directly related
to the efficiency of the numerical method used to solve the wave equation.

Seismic imaging can be performed in the time domain or in the frequency domain regime.
We focus here on the second setting. The drawback of time domain is that it requires
to store the solution at each time step of the forward simulation. The difficulties related
to frequency domain inversion lie in the solution of huge linear systems, which cannot
be achieved today when considering realistic 3D elastic media, even with the progress of
high-performance computing. In this context, the goal is to develop new forward solvers
that reduce the number of degrees of freedom without hampering the accuracy of the
numerical solution.
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We consider here discontinuous Galerkin (DG) methods which are more convenient than
finite difference methods to handle the topography of the subsurface. Moreover, they are
more adapted than continuous Galerkin (CG) methods to deal with hp−adaptivity. This
last characteristics is crucial to adapt the mesh to the different regions of the subsurface
which is generally highly heterogeneous. Nevertheless, the main drawback of classical DG
methods is that they are expensive because they require a large number of degrees of
freedom as compared to CG methods on a given mesh.

In this work we consider a new class of DG method, the hybridizable DG (HDG) method
(see [1] for a more details). Instead of solving a linear system involving the degrees of
freedom of all volumic cells of the mesh, the principle of HDG consists in introducing
a Lagrange multiplier representing the trace of the numerical solution on each face of
the mesh. Hence, it reduces the number of unknowns of the global linear systems and
the volumic solution is recovered thanks to a local computation on each element. HDG
methods have been considered in some recent works, for example, for the solution of the
elastodynamic equations in the time domain [2] and for Maxwell’s equations [3].

We compare the performances of the HDG method with those of classical nodal DG
methods, like methods used in [4] and [5], and we present our first results using a HDG
method for the first-order form of the elastic wave propagation equations for 2D realistic
test-cases.
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