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1. INTRODUCTION 

Level set methods have become increasing popular for solving topology optimization problems, as they 
produce solutions with clear boundaries [1-3]. The conventional level set optimization method uses shape 
sensitivity analysis to define a velocity function that moves the boundary to a more optimal position with respect 
to the objective and constraints. Constraints can be handled though the Lagrange multiplier method [2,3], 
although including multiple constraints can be difficult. Furthermore, the conventional level set optimization 
method is based on shape optimization and it is not easily extended to include other design variables beyond 
boundary position. Many practical engineering optimization problems involve multiple constraints and have 
many design variables, including the boundary position and shape. A new method is developed that utilizes 
boundary integrals and linear programming to introduce multiple constraints and additional design variables into 
the conventional level set based optimization method. 

2. THE SEQUENTIAL LINEAR PROGRAMMING LEVEL SET METHOD 

To illustrate the new method, we use a generic optimization problem where one of the design variables is the 
position of the structural boundary: 

 Minimise: f Ω, x( ), Subject to: gi Ω, x( ) = gi i =1, 2,,m        (1) 

where f is the objective function, gi are the constraint functions, m is the number of constraints, Ω is the domain 
of the structure, which can be characterised by the position of its boundary Γ, and x is a vector of additional 
design variables. Inequality constraints can be included in the above problem by using slack variables. 

It is assumed that the first derivative of the objective and constraints with respect to the additional design 
variables can be computed. The remaining variable in the problem is the shape of the structure, characterized by 
the position of its boundary. Shape sensitivity analysis provides information about how a function changes with 
respect to a movement of the boundary and takes the form of a shape derivative. Over a time step, Δt, the change 
in a function is: 

  

€ 

Δt
∂f Ω, x( )
∂Ω

= Δt s f ⋅V( )
Γ
∫ dΓ = s f ⋅ z( )

Γ
∫ dΓ        (2) 

where sf is a shape sensitivity and V is a velocity function acting normal to the boundary. The time step can be 
eliminated by defining a boundary movement function: z = Δt ⋅ V. The shape sensitivity and boundary move 
functions vary along the boundary and are usually assumed smooth. Therefore, the shape derivative is 
characterised as a boundary integral involving a boundary move function. We assume that the shape sensitivity 
function can be computed and are known. However, we are free to choose the boundary move function. 

To evaluate the integral in (2), the boundary is discretized into a number of segments. If the shape sensitivity 
and boundary move functions are assumed piece-wise constant, then the discretization of the shape derivative for 
the objective function can be written as:  

  

€ 

Δt
∂f Ω, x( )
∂Ω

≈ s f , j ⋅ z j ⋅ l j( )
j=1

n
∑ = cT z , c j = s f , j ⋅ l j       (3) 

where lj is a discrete segment length (or surface area in 3D) for segment j, sf,j is a discrete value of the shape 
sensitivity, and n is the number of discrete segments. The same approach can be used to compute the boundary 
integrals for each constraint, where si,j is a discrete value of the shape sensitivity for constraint i and the 
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boundary integral coefficients are: ai,j = si,j ⋅ lj . 
For topology optimization only (i.e. no additional design variables), an “optimal” choice for the boundary 

movement function is one that maximises the reduction in the objective function (or minimises the shape 
derivative) whilst meeting the constraints, or at least moving towards a feasible solution. This can be achieved by 
solving the following Linear Programming (LP) sub-problem: 

 Minimise: cT z, Subject to: ai
T z=gi − gi, i =1, 2,,m

                                                zmin ≤ z ≤ zmax

      (4) 

where zmin and zmax are side constraints on the boundary movement, which are usually dictated by the Courant–
Friedrichs–Lewy condition for stability or by the limits of the design domain. This approach was tested and 
reasonable results were obtained. However, the solutions did not possess smooth boundaries as the boundary 
move function is not guaranteed to be smooth, even if the shape sensitivity functions were smooth. The LP sub-
problem (4) has too much freedom in choosing z. Therefore, an alternative strategy is introduced where the 
boundary move function is defined as a linear combination of the smooth shape sensitivity functions:  

 

€ 

z j = λ f s f , j + λ isi, ji=1

m
∑ ,  z j,min ≤ z j ≤ z j,max                    (5) 

where λ are weights for each shape sensitivity function. Therefore, the sub-problem during each main iteration of 
the level set method is to find the values of λ that produce a boundary movement function that minimises the 
shape derivative of the objective and meets the constrains. 

The side constraints on the boundary movement are enforced after z is computed from the specified λ values 
in equation (5). Therefore, the change in the objective or a constraint is not a linear function of the λ values and 
they cannot be directly obtained by solving a LP sub-problem. However, the function is likely to be nearly linear, 
as it only becomes non-linear when the side constraints on z are active. Therefore, we can use Sequential LP 
(SLP) to solve for λ. We term this method the SLP level set topology optimization method. 

The SLP level set topology optimization method has several numerical issues to address including the 
obtainment of appropriate limits and first order gradients for the λ values and a method to handle non-linear 
constraints. Efficient and robust procedures have been developed to address each issue and will be presented. 

3. EXAMPLE 

The SLP level set method is 
demonstrated by first solving the classic 
minimization of compliance problem 
subject to a volume constraint. The final 
compliance value is then used as the 
constraint in the dual problem of volume 
minimization while being subject to a 
compliance upper limit. The results for a 2:1 
ratio cantilever are shown in Fig 1. The final 
structures are very similar and the 
constraints are satisfied in both problems. 
Furthermore, the final volume fraction and 
compliance values are within 0.3%. 

4. CONCLUSION 

The example shows that the SLP level set topology optimization method can solve a problem with a single 
compliance constraint. The presentation will include the details of the SLP level set topology optimization 
method and its application to solve problems with various constraints in 2D and 3D and on unstructured grids. 
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Fig. 1. Cantilever, minimization of: a) compliance b) volume. 


