
11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)

July 20–25, 2014, Barcelona, Spain

EFFICIENT NUMERICAL SIMULATION OF
PERIODONTAL LIGAMENT

Marco Favino1, Rolf Krause1 and Christoph Bourauel3

1University of Lugano, via Buffi 13, {marco.favino},{rolf.krause}@usi.ch, ics.usi.ch
2University of Bonn, Welschnonnenstrasse 17, bourauel@uni-bonn.de

Key words: Coupled Problems, Finite Element Method, Poroelasticity, Efficient Solution
Methods

The Periodontal Ligament (PDL) is a thin layer of dense soft connective tissue located
between the tooth root and the alveolar (jaw) bone. The PDL is mainly formed by
a solid fibrous tissue and an interstitial fluid (Figure 1). The distribution of these two
phases cannot be geometrically resolved at the macro-scale. A poroelastic model perfectly
suits to describe this biological tissue, even if the PDL cannot be considered a standard
poroelastic medium: the poroelastic model uses a smeared approach which allows to
specify its local composition by means of macroscopic volume fractions instead of resolving
the complicated micro-structure of the collagen fibers.
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Motivation and Introduction

Objective
Understand the mechanical behavior of the Periodontal Ligament (PDL) under loading conditions.

Complete Mechanical Model
• non-linear,
• time dependent,
• anisotropic,
• two phases (solid collagen and fluid).

In this first study we:
• developed a biphasic material law for the PDL following

[Ehlers & Markert 2001],
• implemented this model using unstructured mixed finite

elements,
• performed simulations employing a tooth geometry.

Approach: Volume Fractions
Biphasic model: the distribution of each constituent α (α ∈ {S, F})
at every point x is described by the (infinitesimal) volume ratio

nα(x, t) = lim
v→0

vα

v

subject to the saturation condition

nS + nF = 1

that avoids any vacant space. Each component has:
• a physical density ραR

• an effective density ρα = nαραR.
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Fig. 1. Scanning electron micro-
graph of the periodontium.

Fig. 2. The microstructure of the
PDL is modeled as two continua in
the same domain.

Conservation Equations

Kinematics

• Deformations at each point p ∈ Ω are given
by the mappings

x = fα(p, t)

for each phase α with velocities

x�
α = ∂fα(p, t)/∂t

• The motion is described in terms of:
– displacements us = fS(p, t) − p
– seepage velocities wF = u�

F − u�
S

Ω fS(Ω, t) = fF (Ω, t)

p

fF (p, t)

fS(p, t)

1

Fig. 3. Deformations of the fluid and the structure part
yield different positions of each material point.

Balance of Mass

Constant physical densities:

(nα)� + nα∇ · x�
α = 0

and the saturation condition give the incompres-
sibility constraint:

∇ ·
�
u�

S + nF wF

�
= 0

Balance of Linear Momentum

Linear momentum conservation equations:

−∇ · T α − Π̂
α

= ραb

with stress tensors

T α = T α
E − nαpI

The moment production term Π̂
α

is subject to

Π̂
S

+ Π̂
F

= 0

Assuming phase F to be a perfect fluid, summing
the two equations up yields

−∇ ·
�
T S

E − pI
�

= (ρS + ρF )b.

Constitutive Law and Discretization

Coupled system

Using Darcy’s law

nF wF = − kf

γFR
(∇p − ρFRb)

and a pure elastic model for the tooth:




− ∇ · T T
E = ρT b on ΩT

− ∇ ·
�
T S

E − pI
�

= (ρS + ρF )b on ΩB

∇ · u�
S − kf

γFR∆p =
kf

γFR∇ · (ρFRb) on ΩB

Numerical simulation
• a linear elasticity constitutive equation for TT

E and TS
E

• implicit Euler method for time integration of the system
(∆tk is the time step)

• a matching grid triangulation of the two bodies
• using P1-P1 mixed finite elements for spatial discretization

Aim: compute the displacements of the elastic part uk
E, uk

B and the
pressure pk as the solution of
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Fig. 4. Two-rooted enamel domain
ΩT .

Fig. 5. Mesh of the two-rooted PDL
ΩB.

Overlapping Schwarz Methods

Solution of large scale Linear System of Equations

• direct solvers, e.g. LU Decomposition, not appli-
cable, due to complexity O(n3)

• ⇒ iterative, preconditioned Krylov space solution
strategy, e.g., CG method or GMRES

Challenges:

• the described problem is not symmetric
• Choose GMRES as iterative solver
• Preconditioner: additive (overlapping) Schwarz

method
• ⇒ (parallel) Krylov-Schwarz method

Additive Schwarz method

• Horizontal decomposition of Ω = ΩT ∪ ΩB into
Ω1, . . . ,ΩN where N , and Ωi ⊂ Ω is the number
of processors

• On each subset Ωi: solve subproblem Aiixi = bi

• Combine solutions
�

i I ixi to the preconditioned
residual. Here I i is a prolongation operator

• Having the preconditioned residual, one can con-
tinue with the GMRES step

Large-scale Linear System of Equations

Local Exact Solution

GMRES Step

New global Iterate

It
e
ra

te

Fig. 6. Parallel solution process: the original problem
is split into parts which can more efficiently be sol-
ved. These partial solutions will then be used in the
GMRES solver as “preconditioned residual”

Numerical Simulations

Relaxation test
Pressure and von Mises Stresses as response to
applied displacements of 0.1 mm.
Parameters were chosen as follows:

Parameter Value Unit
EE 15e3 MPa
νE 0.31
EB 25e-3 MPa
νB 0.032
kf t 1e-13 m/s

Fig. 7. Von Mises stress distribution after 1s.

Fig. 8. Distribution of pressure in the PDL and of Von Mises Stress in the tooth
at 1, 30, and 60 seconds after the displacement application.

Results and Conclusions

Conclusions
• Coupling approach for the bisphasic PDL

and the purely linear elastic dentine were
presented.

• From preliminary simulations:
– elastic parameters for PDL influence

long term behavior;
– permeabilty influences short term re-

action of the stresses and transient ti-
me.

Future works
• use non-linear model for elastic part of

PDL: 0.2 mm is not a small deformation;
• introduce displacement dependant per-

meability;
• boundary conditions for fluid;
• combined experimental and numerical stu-

dies to refine parameters.
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Fig. 9. Force response to relaxation test with
different Young moduli for the PDL.
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Fig. 10. Force response to relaxation test with
different values of permeability kf for the PDL.
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Figure 1: Internal structure of the PDL.

Periodontal diseases have a crucial influence on the PDL status and might even lead to
the loss of teeth. The changes of PDL status in the course of a disease is reflected in a
change of the mechanical properties of the teeths anchorage. A complete and detailed
model of the PDL allows understanding the biomechanical behaviour of teeth and might
also help the early diagnosis of periodontal illnesses.

The simulation with the Finite Element Method of a complete PDL-tooth system gives rise
to a very large linear system due to the fine mesh necessary to describe the PDL. Because
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of the generalized saddle-point nature of the problem, arising from the incompressibil-
ity constraint, efficient solution methods like Domain Decomposition and Multigrid do
not behave optimally as for the elliptic case. Moreover, the large jump in the material
coefficients may hinder convergence of parallel iterative solvers.

In this work, we will extend the model presented in [1] by employing large displacements
and a Fung material hyperelastic law. Then, we will present an efficient solution strategy
based on a multigrid solver that can be used for these generalized saddle-point system. The
solver will be tested on realistic geometries obtained from µ-CT scans of porcine (Figure 2-
left) and human teeth. The model will be validated reproducing loading experiments in
which a displacement is applied on the tooth crown by means of an indenter and the
resulting force response is measured (Figure 2-right).
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Figure 2: Mesh of the tooth-PDL system of a pig (left). Comparison of experimental measure-
ments and a numerical simulation (right).
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