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A high order method in space and in time is formulated for the miscible displacement prob-
lem, which is an important process in enhanced oil recovery. The miscible displacement
problem is a two-component one-phase problem. Conservation of mass for each compo-
nent, combined with Darcy’s law, yields a system of coupled nonlinear partial differential
equations.

We propose a numerical method for solving the miscible displacement problem with dis-
continuous Galerkin method in space and implicit Runge-Kutta method in time [2]. The
method approximates the fluid pressure and the resident fluid concentration. Our algo-
rithm allows us to preserve the high order approximation in both space and time while
reducing the computational cost by a decoupling strategy of the pressure and concentra-
tion equations.

Our algorithm has been implemented in the DUNE framework [1]. We first show the
numerical convergence rates obtained for analytical solutions. The time-step is fixed and
the meshes are uniformly refined. Fig. 1 shows the optimal rates in the gradient of the
pressure for polynomial degrees varying from 1 to 6 and the corresponding rates for the
gradient of the concentration.

Next the method is applied to a quarter-five spot problem. The viscosity of the solvent is
6.9 times larger than the viscosity of the resident fluid. The pressure is approximated by
discontinuous piecewise quartics and the concentration by discontinuous piecewise cubics.
Fig. 2 shows snapshots of the concentration of the resident fluid at a given time, as well
as the velocity fields and the Euclidean norm of the velocity.
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Figure 1: Convergence rate of pressure (left) and concentration (right) in energy norm for various poly-
nomial approximations.

Figure 2: Velocity field and concentration contour of the resident fluid at 15 days. Piecewise cubic
polynomials are used.

Framework. Computing Vol. 82 (2008).

[2] J. Li, B. Riviere and N. Walkington. Convergence of a high order method in time and
space for the miscible displacement equations. Submitted (2013).



