MIXED IMPLICIT AND EXPLICIT FORMULATION AND DOMAIN DECOMPOSITION METHOD OF CONTACT DYNAMICS

Raphaël Monod¹,⁴, Frédéric Dubois²,⁴ and Frédéric Pérales³,⁴

¹ Laboratoire de Mécanique et Génie Civil, CNRS, Montpellier, raphael.monod@univ-montp2.fr
² Laboratoire de Mécanique et Génie Civil, CNRS, Montpellier, frédéric.dubois@univ-montp2.fr
³ Institut de radioprotection et de Sûreté Nucléaire, Saint Paul Lez Durance, frédéric.perales@irsn.fr
⁴ Laboratoire MIST, CNRS - IRSN - Université Montpellier 2, France

Key words: Implicit, Explicit, Domain Decomposition Method, Non-Smooth Contact Dynamics, Cohesive Zone Models, Courant-Friedrich-Levy, High Performance Computing, Message Passing Interface, LMGC90

The Non-Smooth Contact Dynamics approach aims at solving frictional contact problems without regularization nor penalization techniques [1].

In this framework both dynamics and contact problems were solved by implicit algorithms.

The software developed called LMGC90 permits to solve coupled multi physics problems with various constitutive models and interaction laws [2].

The fracture of heterogeneous materials is modeled using a Cohesive Zone Models approach [3] implemented in a LMGC90-based software called Xper [4]. This method needs very small time steps, smaller than one verifying the Courant-Friedrich-Levy criterion for explicit scheme. Thus, to reduce computational cost while keeping results accuracy, we developed an hybrid method based on an explicit integration of dynamics and an implicit description of contact solved by a non linear Gauss-Seidel algorithm. High Performance Computing is adressed by a Domain Decomposition Strategy based on domain overlapping multithreaded.

The numerical strategy is applied to the so called Nooru Mohamed test case. Results are similar for implicit and explicit approach, and also for sequential and multithreaded computations. Implementation is validated by analysing balance energy. The insights of numerical algoritms will be exposed during the presentation.
Computational domain, colored by vertical displacement

Vertical force vs displacement

Energy Balance

REFERENCES


