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Accurately simulating heat and fluid flow in laser and electron beam welding processes
is an arduous task because of the complexity of the physical phenomenon at play. For
instance, melt pool flows often develop steep gradients because of rapid transitioning from
solid to liquid state and pronounced velocity variation across boundary layers. These dif-
ficulties are further compounded by natural and thermocapillary (liquid-tension induced,
Marangoni effect) convection, free-surface deformation and tight coupling between the
temperature and velocity fields. Because of these inherent specificities, attaining grid
converged solutions is notoriously difficult and may necessitate excessively fine meshes
when using standard discretization schemes [1].

Seeking enhanced resolution, we detail the development of a welding simulation model
based on a high-order discontinuous Galerkin (DG) finite-element method [2, 3]. DG is a
highly accurate and geometrically flexible discretization technique whose favorable numer-
ical properties have been proven advantageous for simulating complex fluid phenomena.
In this work, the DG approach is extended to the simulation of manufacturing processes
involving metal fusion, such as welding. It is expected that the high-order solution rep-
resentation will allow for a much more reliable capture of the very non-linear phenomena
characteristic of these processes. Accessorily, the (absence of) continuity of the solution
allows for a direct visual check of grid convergence.

Our numerical model implements a classical enthalpy-porosity constitutive law account-
ing for hydrodynamic and thermal effects occuring during the phase transition from solid
to liquid metal [4]. Specifically, we consider the incompressible Navier-Stokes and energy
equations augmented with phase-transformation thermodynamical effects, porosity-based
mushy-zone modeling, Marangoni free-surface stresses and buoyancy-induced natural con-
vection terms. The resulting constitutive equations are discretized with an interior-penalty
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formulation, and solved implicitly using a Newton-Krylov scheme. Two stabilization ap-
proaches for incompressible flows, namely the non-conforming pressure discretization [5]
and an artificial compressibility local preconditioner [6], are compared.

This contribution concerns in particular implementation issues, as well as applicability
and advantages of the DG framework to this type of simulation. The cost and accuracy
benefits of high-order accurate finite-element formulations will be quantified through mesh
and polynomial interpolation order refinement studies. Next to benchmark test cases,
proof-of-concept simulations of fusion welding and additive manufacturing processes will
be shown.
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