
11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)
July 20–25, 2014, Barcelona, Spain

DIRECT NUMERICAL SIMULATION OF THE FLOW
AROUND A SPHERICAL BUBBLE IN A TURBULENT

PIPE FLOW
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This work aims at investigating the flow over a high-Reynolds-number clean spherical
bubble fixed on the axis of a turbulent pipe flow. In particular, the first- and second-
order statistics of the flow over the bubble and the forces acting on it will be fully ana-
lyzed. In fact, Merle et al. [1] state that the flow over the bubble is influenced by all the
length and time scales down to the Kolmogorov microscales. Hence, the use of kinetic-
energy-conserving schemes [2] is a requirement that must be considered in order to obtain
trustable results.

The problem under consideration falls into the classification of bubbly flow, which differs
in three important aspects from bluff body flows. First, when the liquid is pure enough
has the possibility to slip along the surface of the bubbles, in contrast to the flow over rigid
bodies where the no-slip condition prevails. Second, due to the very small relative density
of bubbles compared to that of the liquid, almost all the inertia is contained in the liquid,
making inertia induced hydrodynamic forces particularly important in the prediction of
bubble motion. Third, the shape of the bubbles may change with the local forces, adding
new degrees of freedom to an already complex problem.

In detail, the problem consists in a spherical bubble, with diameter d and density ρbl,
placed fixed at the center of a circular pipe, having diameter D and length L, that
contains a fluid of density ρfl = 10ρbl. The physics of the problem depends on the bulk
and bubble Reynolds numbers. The bulk Reynolds number, is defined asRe = ρflubD/µfl,
where ub refers to the bulk velocity. Similarly, the bubble Reynolds number is expressed as
Rebl = ρblucd/µbl, being uc the time-averaged centerline velocity of the flow. In particular,
this test chooses ρbl, Re, Rebl and ub as 1, 6000, 500 and 1, so that the size of the bubble
is comparable to the Taylor microscale of the flow and is about ten times the Kolmogorov
microscale. The relation between pipe length and diameter is L = 5D and the bubble’s
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diameter is chosen as L = 78d. In this way, the pipe is long enough to include even
the largest-scale structures, and the velocity defect in the bubble’s wake is significantly
decreased before re-entering through the inlet boundary due to the periodic condition.

The Navier-Stokes equations in the variable-density incompressibility limit have been dis-
cretized by means of second-order finite-volume conservative mesh schemes. Such schemes
preserve not only mass and momentum, but also the kinetic energy. In addition, the grid
spacing has been selected in order to satisfy requirements for the correct resolution of
both the pipe and bubble’s boundary layer and bubble’s wake. Hence, the mesh is made
up of 5.4M cells, resulting from rotating 128 times a 2-D grid, which is discretized by
means of 128 points (concentrated near the pipe wall and bubble) in the radial direction,
and 330 points (accumulated at the bubble) in the y direction. In detail, the 2-D mesh
contains the first radial point near the pipe wall at r+ = 0.94 —similarly to the grid
spacing used for the direct numerical simulation of the turbulent pipe flow at Re = 5300
by Eggels et al. [3]. Furthermore, the mesh is generated such that at least three cells lie
within the bubble’s boundary layer, which, according to Legendre and Magnaudet [4], is
a necessary condition in order to properly solve all the scales in the vicinity of the bubble.

Figure 1: Flow around a spherical bubble in a turbulent pipe flow.
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