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The Lüders band and Portevin - Le Chatelier (PLC) effects have been observed for many
metallic materials on their tensile stress strain curve at least in a given range of tempera-
ture and prescribed strain rate. These both effects have been modeled using a suitable set
of constitutive equations [1, 2] and finite element model of homogeneous 2D and 3D speci-
mens [3, 4]. The material model called KEMC is based on an additional internal variable:
the aging time denoted ta. This latter induces a stress over-hardening corresponding to
the pinning of dislocations due to strain aging phenomenon (diffusion of solute atoms).
This over-hardening leads to a negative strain rate sensitivity of the model at least in a
given range of strain rate and induces serrations on the tensile curve and localisation of
the deformation.

This effect has also been recently observed under cyclic loading conditions [5] on Cobalt
alloys; or for low strain rates (1.e-6 s−1) in a commercially pure Titanium alloy at room
temperature. In this last case the PLC effect has been observed in a range of global strain
rate for which strain rate sensitivity is positive. The original isotropic formulation of the
KEMC model is not able to simulate such a phenomena and simulations at a lower scale
are requested.

The over-hardening term of the original KEMC model has been introduced in a crystal
plasticity model in order to simulate the band propagation associated with the PLC
and Lüders effects in single-crystal and poly-crystalline aggregates. The model has been
tested on BCC and HCP materials, for different number of grains with random or textured
orientations.
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Figure 1: Simulation of (a) Lüders band propagation in Tantalum aggregate (D.Colas), (b) Portevin - Le
Chatelier band propagation Titanium (A.Marchenko) aggregate
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