POLYCRYSTALLINE MODELING OF THE PORTEVIN-LE CHATELIER EFFECT

M. Mazière 1

 1 MINES Paris Tech, Centre des Matériaux, CNRS UMR 7633, BP 87, 91003 Evry Cedex, France

Key words: Portevin - Le Chatelier effect (PLC), Lüders band, Crystal plasticity

The Lüders band and Portevin - Le Chatelier (PLC) effects have been observed for many metallic materials on their tensile stress strain curve at least in a given range of temperature and prescribed strain rate. These both effects have been modeled using a suitable set of constitutive equations [1, 2] and finite element model of homogeneous 2D and 3D specimens [3, 4]. The material model called KEMC is based on an additional internal variable: the aging time denoted t_a . This latter induces a stress over-hardening corresponding to the pinning of dislocations due to strain aging phenomenon (diffusion of solute atoms). This over-hardening leads to a negative strain rate sensitivity of the model at least in a given range of strain rate and induces serrations on the tensile curve and localisation of the deformation.

This effect has also been recently observed under cyclic loading conditions [5] on Cobalt alloys; or for low strain rates $(1.e-6 s^{-1})$ in a commercially pure Titanium alloy at room temperature. In this last case the PLC effect has been observed in a range of global strain rate for which strain rate sensitivity is positive. The original isotropic formulation of the KEMC model is not able to simulate such a phenomena and simulations at a lower scale are requested.

The over-hardening term of the original KEMC model has been introduced in a crystal plasticity model in order to simulate the band propagation associated with the PLC and Lüders effects in single-crystal and poly-crystalline aggregates. The model has been tested on BCC and HCP materials, for different number of grains with random or textured orientations.

REFERENCES

 MacCormick, P., 1989. Theory of flow localisation due to dynamic strain ageing. Acta Mater 36, 3061–3067.

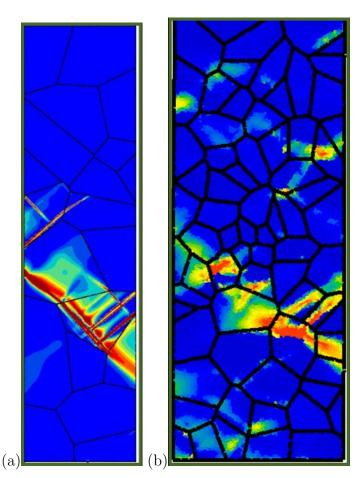


Figure 1: Simulation of (a) Lüders band propagation in Tantalum aggregate (D.Colas), (b) Portevin - Le Chatelier band propagation Titanium (A.Marchenko) aggregate

- [2] Kubin, L., Estrin, Y., 1990. Evolution of dislocation densities and the critical conditions for the Portevin-le Chatelier effect. Acta Metallurgica et Materialia 38, 697 – 708.
- [3] Benallal, A., Berstad, T., Clausen, A., Hopperstad, O., 2006. Dynamic strain aging and related instabilities : experimental, theoretical and numerical aspects. Eur. J. Mech. 25, 397–424.
- [4] Mazière, M., Besson, J., Forest, S., Tanguy, B., Chalons, H., Vogel, F., 2010. Numerical aspects in the finite element simulation of the Portevin-Le Chatelier effect. Comp. Meth. Appl. Mech. Engng 199, 734–754.
- [5] Chaboche, J.L., Gaubert, A., Kanout, P., Longuet, A., Azzouz, F., Mazière, M., 2013. Viscoplastic constitutive equations of combustion chamber materials including cyclic hardening and dynamic strain aging. International Journal of Plasticity 46, 1 – 22.