MULTIGRID ALGORITHMS FOR \textit{HP}-DISCONTINUOUS GALERKIN DISCRETIZATIONS OF ELLIPTIC PROBLEMS

Paola F. Antonietti1, Marco Sarti2 and Marco Verani3

1 MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy. paola.antonietti@polimi.it
2 MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy. marco.sarti@polimi.it
3 MOX, Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133, Milano, Italy. marco.verani@polimi.it

\textbf{Key words:} \textit{hp}-version discontinuous Galerkin, multigrid algorithms.

We present \textit{W}-cycle multigrid algorithms for the solution of the linear system of equations arising from a wide class of \textit{hp}-version discontinuous Galerkin discretizations of elliptic problems. Starting from a classical framework in multigrid analysis, we define a smoothing and an approximation property, which are used to prove the uniform convergence of the \textit{W}-cycle scheme with respect to the granularity of the grid and the number of levels. The dependence of the convergence rate on the polynomial approximation degree p is also tracked, showing that the contraction factor of the scheme deteriorates with increasing p. A discussion on the effects of employing inherited or non-inherited sublevel solvers is also presented. Numerical experiments confirm the theoretical results.