EMERGING CHALLENGES FOR EDGECFD SIMULATIONS IN MASSIVELY MULTICORE ARCHITECTURES

Renato N. Elias¹, José J. Camata¹ and Alvaro L. G. A. Coutinho¹

¹ High Performance Computing Center,
P.O. Box 68516, Rio de Janeiro, RJ – Brazil 21941-598
{renato, camata, alvaro}@nacad.ufrj.br
http://www.nacad.ufrj.br

Key Words: Instructions, Multiphysics Problems, Applications, Computing Methods.

There is a tendency for a growing number of cores per CPU in modern parallel architectures [1,2]. EdgeCFD is a Finite Element software that was developed to take advantage of hybrid, distributed and threaded memory computers [3], however, its algorithms still explores features of non-hybrid systems, where MPI or OpenMP could be used alone. In order to efficiently run in emerging massively multicore architectures, algorithms must change to reduce intra-node communication while increasing the rate of data sharing through memory buses. Moreover, visualization and data storage are also becoming a big bottleneck for future and more complex simulations [4]. This talk exposes such concerns while giving simple alternatives to mitigate these problems in the context of EdgeCFD choices.

REFERENCES


