STRONG DISCONTINUITY METHOD APPLIED TO
SOIL/STRUCTURE INTERACTION IN EARTHQUAKE
ENGINEERING

B. Richard¹, A. Frau²

¹ CEA, DEN, DANS, DM2S, SEMT, Laboratoire d’Etudes de Mecanique Sismique, F-91191
Gif sur Yvette, Benjamin.Richard@cea.fr
² CEA, DEN, DANS, DM2S, SEMT, Laboratoire d’Etudes de Mecanique Sismique, F-91191
Gif sur Yvette, Alberto.Frau@cea.fr

Key words: Strong Discontinuity Method, Soil/structure interaction, Earthquake Engineering, Cast3M

The recent events occurred in Japan have once again shown the importance to account for
the seismic risk in early-design stage of a structure. When considering nuclear facilities,
this risk is taken into account carefully and accurate assessment methodologies are used
to predict the effects of an earthquake. Under a seismic loading, the dynamic response of
the structure may be dependent on the soil. This phenomenon in particularly preponder-
ant when considering deep foundations. Making a structural assessment of the structure
requires, of course, a satisfactory quantification of the seismic forces transferred from the
soil to it and therefore, requires to capture the main dissipative phenomena related to
the soil structure interaction such as plasticity or soil/foundation uplift. In this contribu-
tion, one is focused to this latter phenomenon namely the soil/foundation uplift. Several
approaches have been developed to account for this phenomenon. Among the most used
ones, one can distinguish the Winkler’s methodologies which lie in considering a spatial
distribution of springs or beam elements under the foundation [1, 2]. An alternative is to
consider macroelements [3, 4] enhanced with complex constitutive law to deal with dis-
sipative mechanisms. Although these approaches lead to satisfactory results, their main
drawbacks are (i) the way of identifying their material parameters, (ii) numerical robust-
ness issues when dealing with unilateral conditions due to velocity corrections that should
be made and last, but not least, (iii) the quantification of the uplift is not straightforward
due to the fact that no displacement discontinuity is introduced at the soil/foundation
interface.

In this paper, the effect of soil/structure interaction is investigated. Within the frame-
work of the Discrete Strong Discontinuity Method (SDM) [5, 6] a numerical model has
been developed in order to capture in a natural way the displacement field discontinuity
that appears when foundation uplift is activated. In addition, due to the cyclic nature
of the seismic loading, a foundation can be successively uplifted and then, back in its initial position. This phenomenon leads to variations of the velocity field that should be corrected and controlled by specific techniques. This aspect is also studied in this contribution. The efficiency of the proposed strategy to deal with uplift is assessed through a structural case study.

REFERENCES


