
11th World Congress on Computational Mechanics (WCCM XI)
5th European Conference on Computational Mechanics (ECCM V)

6th European Conference on Computational Fluid Dynamics (ECFD VI)

July 20–25, 2014, Barcelona, Spain

ADJOINTS OF FIXED-POINT ITERATIONS

A.Taftaf∗1, L. Hascoët2 and V.Pascual3

INRIA, Sophia-Antipolis, France, {Elaa.Teftef, Laurent.Hascoet, Valerie.Pascual}@inria.fr

Key words: Automatic Differentiation, Adjoint, Fixed-Point algorithms

Adjoint algorithms, and in particular those obtained through the adjoint mode of Auto-
matic Differentiation (AD), are the most efficient way to obtain the gradient of a numerical
simulation: assuming that the simulation has a scalar output (objective function), the ad-
joint algorithm can return its gradient at a cost independent of the number of inputs. The
key is that adjoints propagate partial gradients backwards from the result of the simula-
tion. This however uses the data-flow of the simulation in reverse order, at a cost that
increases with the length of the simulation. AD research looks for strategies to reduce
this cost, taking advantage of the structures of the given program. One such frequent
structure is fixed point iterations, which occur at the topmost level of steady-state simu-
lations as well as in unsteady simulations. They may also occur deeper in the simulation,
for instance in linear solvers.

It is common wisdom that the first iterations of a fixed-point search operate on a mean-
ingless state vector, and that reversing the corresponding data-flow is wasted effort. An
adapted adjoint strategy for the iterative process should consider only the last or the
few last iterations. Furthermore, there is a discrete component to an iterative algorithm,
namely the number of iterations, and this makes differentiability questionnable. For these
reasons we are looking for a specific strategy for the adjoint, that reverses only the nec-
essary data-flow, and that restores confidence in the validity of the derivative.

One could wonder if a differentiation strategy for the iterative computations is really
needed in practice, as yet more focused strategies exist. In the case of non-linear solvers
using Newton’s method, we know only the last iteration need be differentiated. In the
case of linear solvers, modern methods such as GMRES hide the iterative process from
the differentiation engine: the adjoint need only consist of one or two calls to the same
solver. Still, we believe this doesn’t cover all cases: steady-state simulations are just one
example, where adjoints are much needed. Also, the non-linear variant of GMRES may
need a specific adjoint strategy.

At least two authors have studied mathematically fixed point iterations with the goal of
defining an efficient adjoint. Griewank’s “Delayed Piggyback” (AG) [3, ?] ultimately tar-



A.Taftaf, L. Hascoët and V.Pascual

gets computation of the adjoint derivatives together with the tangent derivatives, which
are ingredients of a “reduced approximation estimate” that exhibits improved conver-
gence properties. Christianson’s “Two Phases”(BC) method [1, 2] focuses exclusively on
adjoints. Like others, both agree that the iterations convergence rate is similar for the
derivative computation and the original computation. Derivatives convergence may lag
behind by a few iterations, but will eventually converge at the same rate. The key part is
about the scheduling of adjoint iterations with respect to the original ones. Both methods
achieve to differentiate only the last or the few last iterations i.e. those who operate on
physically meaningful values. Both manage also to avoid näıve inversion of the original
sequence of iterations, therefore saving the cost of data-flow reversal. Consequently the
adjoint, which is itself a fixed point, must have a distinct, specific stopping criterion.

(AG): (BC):0 1 2 ? ? ? * * * 0 1 2 * * * * * *

Because of its setting, method AG (on the left) makes some additional assumptions
whereas BC (on the right) remains general on the shape of the iteration step and on the
structure of the surrounding program. Another difference is that BC starts adjoining
the iteration step – actually the last one – only when the original iteration has converged
“fully” (*), whereas AG triggers the adjoint iterations earlier, together with the remaining
original ones, when those are converged only “sufficiently” (?), which may be hard to
determine mechanically. Since adjoint computation starts on slightly approximate values,
it may require a few more iterations than BC. A last difference is that AG requires
adjoining the sequel of the program i.e. the part after the fixed point iteration, repeatedly
inside the adjoint iteration step. This is fine in the chosen setting where the sequel is
assumed short, but it has a significant cost in general when the sequel is complex or when
fixed point loops are nested.

We are implementing in the team’s AD tool Tapenade a specialized strategy for the
adjoint of iterative computations, along the lines of method BC, triggered by a user-given
differentiation directive. To benchmark and experiment, we selected a steady-state flow
solver and a Newton solver.

REFERENCES

[1] B. Christianson. Reverse accumulation and attractive fixed points. Optimization
Methods and Software, 3:311–326, 1994.

[2] B. Christianson. Reverse accumulation and implicit functions. Optimization Methods
and Software, 9(4):307–322, 1998.

[3] A. Griewank and C. Faure. Piggyback differentiation and optimization. In Biegler
et al., editor, Large-scale PDE-constrained optimization, pages 148–164. Springer,
LNCSE #30, 2003.

[4] A. Griewank and A. Walther. Evaluating Derivatives: Principles and Techniques of
Algorithmic Differentiation. Other Titles in Applied Mathematics, #105. SIAM, 2008.

2


