A 3D SYMMETRIC CELL-CENTERED LAGRANGIAN SCHEME BASED ON A MULTI-DIMENSIONAL MINMOD LIMITER

GABRIEL GEORGES1,*, JEROME BREIL1 and PIERRE-HENRI MAIRE2.

1 UMR CELIA, Université Bordeaux 1, 351 Cours de la Libération, 33405 Talence, France, georges@celia.u-bordeaux1.fr
2 CEA/CESTA, 15 Avenue des Sablières CS 60001, 33116 Le Barp cedex, France

Key words: Lagrangian hydrodynamics, cell-centered, multi-dimensional, second-order, slope limiter.

The gas dynamic equations under the Lagrangian formalism are well adapted to the simulation of multi-material compressible fluid flows such as those encountered in the domain of Inertial Confinement Fusion (ICF). Different cell-centered finite volume schemes have been developed for solving these equations [1, 2]. In these schemes, the node velocity is computed by imposing a momentum balance conservation condition around each node. The multi-dimensional scheme presented here is a symmetric version of [3] for unstructured meshes. Both momentum and total energy are globally conserved. The second order extension is based on a piecewise linear reconstruction of the pressure and velocity fields obtained via a least squares procedure. A new slope limiter based on a multi-dimensional extension of the minmod method is developed to ensure the monotonicity. Several academic test cases are studied in order to prove the robustness and accuracy of the scheme.

REFERENCES

