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The numerical treatment of wave propagation through linear elastic continua with the
Boundary Element Method (BEM) inherently involves the proper approximation of tem-
poral convolution integrals. This talk introduces and discusses a new data efficient for-
mulation that is based on Lubich’s convolution quadrature method [1].

Convolution Integral and Convolution weights Given a time interval (0, T ) ∈ R+

and its subdivision into M equidistant timesteps ∆t, such that tn = n∆t, n = 0..M .
Consider a domain Ω ∈ R3, two points x,y ∈ ∂Ω with r = y−x and a vector-valued field
φ (x, t). With the displacement fundamental solution U (r, t), the occuring convolution
integral is consequently defined and approximated by

tn∫
0

U (r, tn − τ)φ (y, τ) d τ ≈
n∑

m=1

ωn−m (r)φm (y) , ωn (r) =
∂n

n!∂ξn

[
Û

(
r,
γ (ξ)

∆t

)]
ξ=0

.

A crucial prerequisite for this approach is the existence of the fundamental solution
Û (r, s) in Laplace domain and the selection of an appropriate multistep method with
characteristic polynomial γ (ξ). Commonly, Cauchy’s Integral Formula is used to compute
the n-th partial derivative with respect to ξ. Contrary to that, as is proposed by [2] for
acoustics, we present a direct, recursive evaluation of the weights for the elastodnamic
case. Û (r, s) is a linear combination of expressions

P n
α (r, s) := s−n exp

(
− s

rcα

)
, n = 0, 1, 2 and α = 1, 2

with cα being the wave velocities. Based on the BDF-2 scheme, Hackbusch, Kress and
Sauter [2] provide exact expressions for the n-th partial derivative of P 0

α (r, γ(ξ)/∆t) in-
volving Hermite polynomials. Monegato [3] extends this to higher BDF schemes and
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provides recurrence relations. In this presentation, we derive similar expressions for the
computation of the n-th partial derivatives of the two remaining expressions P 1

α (r, γ(ξ)/∆t)
and P 2

α (r, γ(ξ)/∆t) for BDF-2. This finally results in a direct evaluation of the convolution
weights for the single and regularized double layer potential.

Weight Interpolation Scheme Since the spatial discretization is inevitably bounded
with r ≤ rmax, a Hermite interpolation scheme is employed for the weight functions in
[0, rmax] to speed up the kernel evaluation.

Data Efficiency The weight functions that exhibit local support behaviour in r act as
kernel functions for the spatial integration. To utilize the local support information, a
Principal Component Analysis is performed to compute subdomains of Γ. Subsequently,
utilizing a numerical support detection, zero matrix blocks are determined prior to any
matrix evaluation.

Results A rod of dimensions 3 m×1 m×1 m is investigated (Figure 1). The rod is
clamped on one side and on the opposing side a heaviside traction load is applied. Pa-
rameters are set to β = c1∆t

re
= 1, c1 = 1m

s
, c2 =

√
0.5m

s
and the interval detection

accuracy εsupp = 10−6. The results are shown in Table 1.

mto. ... total memory [GB]

mth. ... theoretical memory [GB]

lvl # elem. nt memto. memth. ratio
0 112 38 - - 0.81
1 448 56 0.18 0.23 0.78
2 1792 87 4.21 5.91 0.71
3 7168 143 89.68 157.16 0.57

Table 1: Memory Consumption results Figure 1: Surface mesh (1792 elements)
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