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We present a new approximation of elastodynamic frictionless contact problems based
both on the finite element method and on an adaptation of Nitsche’s method which was
initially designed for Dirichlet’s condition [4]. The corresponding space semi-discretized
weak form reads:

Find a displacement uh : [0, T ]→ Vh such that for t ∈ [0, T ] :

〈ρüh(t),vh〉+ AΘγh(uh(t),vh) +

∫
ΓC

1

γh
[Pγh(uh(t))]+PΘγh(vh) dΓ = L(t)(vh),

∀ vh ∈ Vh,

uh(0, ·) = uh0 , u̇h(0, ·) = u̇h0 .

(1)

In the above formulation Vh is a finite element space built from standard Lagrange fi-
nite elements, piecewise linear or quadratic, AΘγh(uh,vh) :=

∫
Ω
σ(uh) : ε(vh) dΩ −∫

ΓC

Θγh σn(uh)σn(vh) dΓ and PΘγh(vh) := vhn − Θγh σn(vh). The linear form L(·) stands

for prescribed body and boundary forces. The domain of the elastic body is denoted by
Ω and the contact boundary by ΓC ; T is the final time of simulation ; ρ is the density
of the elastic material ; the notation vhn stands for the normal component on ΓC of vh,
and σn(vh) is the normal stress on ΓC ; uh0 (resp. u̇h0) is an approximation of the initial
displacement u0 (resp. the initial velocity u̇0). The notation [·]+ stands for the positive
part of a scalar quantity, and 〈·, ·〉 stands for the L2(Ω) inner product. The parameter γh
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is a positive piecewise constant function on the contact interface ΓC (γh(x) = γ0hT (x),
where γ0 is a positive constant and hT (x) is the size of the mesh element T ). Note the ad-
ditional numerical parameter Θ which can be freely chosen in R. As in Nitsche’s method
for (static) unilateral contact, values of interest for Θ are −1, 0, 1 [1].

A main interesting characteristic is that this approximation produces well-posed space
semi-discretizations, for any value of γ0 > 0, contrary to standard finite element dis-
cretizations. We study associated energy conservation properties and manage to prove
that :

d

dt
Eh

Θ(t) = (Θ− 1)

∫
ΓC

1

γh
[Pγh(uh(t))]+u̇

h
n(t) dΓ

where Eh
Θ(t) := Eh(t)−ΘRh(t) is an augmented energy associated to the semi-discrete so-

lution uh(t). The mechanical energy is given byEh(t) := 1
2

[
ρ‖u̇h(t)‖2

0,Ω + 1
2
a(uh(t),uh(t))

]
and Rh(t) := 1

2

[
‖γh

1
2σn(uh(t))‖2

0,ΓC
− ‖γh−

1
2 [Pγh(uh(t))]+‖2

0,ΓC

]
is an extra term, which

represents, roughly speaking, the non-fulfillment of the contact conditions at the semi-
discrete level. Note in particular that the symmetric variant (Θ = 1) conserves the discrete
augmented energy Eh

Θ.

Various time-discretizations for (1) are then considered, with the families of θ-schemes
and Newmark schemes. We also introduce a new hybrid scheme which is second-order ac-
curate and numerically stable without any restriction on the time-step in the case Θ = 1.
This new scheme is inspired from [2, 3], and introduces much less dissipation than un-
conditionally stable variants of θ-schemes and Newmark schemes. We study theoretically
the well-posedness of each discrete scheme as well as its energy conservation properties.
We finally achieve the corresponding numerical experiments.
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