A NITSCHE FINITE ELEMENT METHOD FOR DYNAMIC CONTACT

Franz Chouly^{1,*}, Patrick Hild² and Yves Renard³

¹ Laboratoire de Mathématiques de Besançon - UMR CNRS 6623, Université de Franche-Comté, 16 route de Gray, 25030 Besançon Cedex, France. email: franz.chouly@univ-fcomte.fr url: http://lmb.univ-fcomte.fr/franz-chouly ² Institut de Mathématiques de Toulouse - UMR CNRS 5219, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse Cedex 9, France. email: patrick.hild@math.univ-toulouse.fr url: http://www.math.univ-toulouse.fr url: http://www.math.univ-toulouse.fr/~phild/ ³ Université de Lyon, CNRS, INSA-Lyon, ICJ UMR5208, LaMCoS UMR5259, F-69621, Villeurbanne, France. email: yves.renard@insa-lyon.fr url: http://math.univ-lyon1.fr/~renard/

Key words: *unilateral contact, elastodynamics, finite elements, Nitsche's method, timemarching schemes, stability*

We present a new approximation of elastodynamic frictionless contact problems based both on the finite element method and on an adaptation of Nitsche's method which was initially designed for Dirichlet's condition [4]. The corresponding space semi-discretized weak form reads:

$$\begin{cases} \text{Find a displacement } \mathbf{u}^{h} : [0, T] \to \mathbf{V}^{h} \text{ such that for } t \in [0, T] : \\ \langle \rho \ddot{\mathbf{u}}^{h}(t), \mathbf{v}^{h} \rangle + A_{\Theta \gamma_{h}}(\mathbf{u}^{h}(t), \mathbf{v}^{h}) + \int_{\Gamma_{C}} \frac{1}{\gamma_{h}} \left[P_{\gamma_{h}}(\mathbf{u}^{h}(t)) \right]_{+} P_{\Theta \gamma_{h}}(\mathbf{v}^{h}) \, d\Gamma &= L(t)(\mathbf{v}^{h}), \\ \forall \mathbf{v}^{h} \in \mathbf{V}^{h}, \end{cases}$$
(1)
$$\forall \mathbf{v}^{h} \in \mathbf{V}^{h}, \end{cases}$$

In the above formulation \mathbf{V}^h is a finite element space built from standard Lagrange finite elements, piecewise linear or quadratic, $A_{\Theta\gamma_h}(\mathbf{u}^h, \mathbf{v}^h) := \int_{\Omega} \boldsymbol{\sigma}(\mathbf{u}^h) : \boldsymbol{\varepsilon}(\mathbf{v}^h) \ d\Omega - \int_{\Gamma_C} \Theta\gamma_h \sigma_n(\mathbf{u}^h) \sigma_n(\mathbf{v}^h) \ d\Gamma$ and $P_{\Theta\gamma_h}(\mathbf{v}^h) := v_n^h - \Theta\gamma_h \sigma_n(\mathbf{v}^h)$. The linear form $L(\cdot)$ stands for prescribed body and boundary forces. The domain of the elastic body is denoted by Ω and the contact boundary by Γ_C ; T is the final time of simulation; ρ is the density of the elastic material; the notation v_n^h stands for the normal component on Γ_C of \mathbf{v}^h , and $\sigma_n(\mathbf{v}^h)$ is the normal stress on Γ_C ; \mathbf{u}_0^h (resp. $\dot{\mathbf{u}}_0^h$) is an approximation of the initial displacement \mathbf{u}_0 (resp. the initial velocity $\dot{\mathbf{u}}_0$). The notation $[\cdot]_+$ stands for the positive part of a scalar quantity, and $\langle \cdot, \cdot \rangle$ stands for the $L^2(\Omega)$ inner product. The parameter γ_h is a positive piecewise constant function on the contact interface Γ_C ($\gamma_h(x) = \gamma_0 h_T(x)$, where γ_0 is a positive constant and $h_T(x)$ is the size of the mesh element T). Note the additional numerical parameter Θ which can be freely chosen in \mathbb{R} . As in Nitsche's method for (static) unilateral contact, values of interest for Θ are -1, 0, 1 [1].

A main interesting characteristic is that this approximation produces well-posed space semi-discretizations, for any value of $\gamma_0 > 0$, contrary to standard finite element discretizations. We study associated energy conservation properties and manage to prove that :

$$\frac{d}{dt}E^{h}_{\Theta}(t) = (\Theta - 1)\int_{\Gamma_{C}} \frac{1}{\gamma_{h}} \left[P_{\gamma_{h}}(\mathbf{u}^{h}(t))\right]_{+} \dot{u}^{h}_{n}(t) d\Gamma$$

where $E_{\Theta}^{h}(t) := E^{h}(t) - \Theta R^{h}(t)$ is an augmented energy associated to the semi-discrete solution $\mathbf{u}^{h}(t)$. The mechanical energy is given by $E^{h}(t) := \frac{1}{2} \left[\rho \| \dot{\mathbf{u}}^{h}(t) \|_{0,\Omega}^{2} + \frac{1}{2}a(\mathbf{u}^{h}(t), \mathbf{u}^{h}(t)) \right]$ and $R^{h}(t) := \frac{1}{2} \left[\| \gamma_{h}^{\frac{1}{2}} \sigma_{n}(\mathbf{u}^{h}(t)) \|_{0,\Gamma_{C}}^{2} - \| \gamma_{h}^{-\frac{1}{2}} [P_{\gamma_{h}}(\mathbf{u}^{h}(t))]_{+} \|_{0,\Gamma_{C}}^{2} \right]$ is an extra term, which represents, roughly speaking, the non-fulfillment of the contact conditions at the semi-discrete level. Note in particular that the symmetric variant ($\Theta = 1$) conserves the discrete augmented energy E_{Θ}^{h} .

Various time-discretizations for (1) are then considered, with the families of θ -schemes and Newmark schemes. We also introduce a new hybrid scheme which is second-order accurate and numerically stable without any restriction on the time-step in the case $\Theta = 1$. This new scheme is inspired from [2, 3], and introduces much less dissipation than unconditionally stable variants of θ -schemes and Newmark schemes. We study theoretically the well-posedness of each discrete scheme as well as its energy conservation properties. We finally achieve the corresponding numerical experiments.

REFERENCES

- F. CHOULY, P. HILD, AND Y. RENARD, Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments. http://hal.archives-ouvertes.fr/hal-00776619. To appear in Math. Comp.
- [2] O. GONZALEZ, Exact energy and momentum conserving algorithms for general models in nonlinear elasticity, Comput. Methods Appl. Mech. Engrg., 190 (2000), pp. 1763– 1783.
- [3] P. HAURET AND P. LE TALLEC, Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 4890–4916.
- [4] J. NITSCHE, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 36 (1971), pp. 9–15.