Normal mode based description of HET-s prion fibrils conformational change via pH variation

Jae In Kim¹, Hyunsung Choi², Hyunjoon Chang³, Gwonchan Yoon^{4,5}, and Sungsoo Na⁶

¹ Department of Mechanical Engineering Korea University, 5ga Anam-dong, Sungbuk-gu 136-713 Seoul, Korea, jay414@korea.ac.kr

² Department of Mechanical Engineering Korea University, 5ga Anam-dong, Sungbuk-gu 136-713 Seoul, Korea, <u>blacktosel@gmail.com</u>

³ Department of Mechanical Engineering Korea University, 5ga Anam-dong, Sungbuk-gu 136-713 Seoul, Korea, <u>wkdguswns90@korea.ac.kr</u>

³ Department of Mechanical Engineering Boston University, Boston MA, USA, <u>gwonchanyoon@gmail.com</u>

⁴ Department of Mechanical Engineering Korea University, 5ga Anam-dong, Sungbuk-gu 136-713 Seoul, Korea, <u>yo2na@korea.ac.kr</u>

⁶ Department of Mechanical Engineering Korea University, 5ga Anam-dong, Sungbuk-gu 136-713 Seoul, Korea, <u>nass@korea.ac.kr</u>

Key Words: HET-s prion fibril, parameter free elastic network model, normal mode analysis

The HET-s prion fibrils, which is found in the filamentous fungus *Podospora anserina*, exhibit conformational changes according to the pH variation[1]. Due to pH variation inside live body, the HET-s prion fibrils changes its conformation. The conformational change leads the change of fibril arrangement, which shows different mechanical properties.

We built the HET-s prion fibrils in atomic scale based on carbon alpha atoms, and analyze with parameter free elastic network model (pfENM). The pfENM is a variation of ENM without cut-off distance, which considers interactions between all-residues in the structure. Since the distance between fibril is ~22Å, pfENM shows proper vibration behavior with considering long-range interactions between fibrils[2].

Here, we explain the conformational changes as breathing mode with the fundamental eigenmodes of the fibrils such as torsional and bending modes using parameter free elastic network model. The 7^{th} , 10^{th} , and 18^{th} modes showed high correlations with experimentally confirmed directions of conformational change. The 7th eigenmode is the fundamental mode that describes the breathing mode and it describes conformational change of HET-s prion fibril driven by pH oscillations.

The torsional modes derived from pfENM without chemical information, succesfully described the conformational change of HET-s prion fibril induced by pH oscillation. It shows that the direction of conformational change is involved to structure itself[3]. The chemical stimulation such as pH oscillation is a trigger to the conformational change of HET-s prion fibril. Which indicate that normal mode based study with coarse-grained models may shed light to the mechanochemistry related studies.

Acknowledgement

This research was supported by Basic Science Research Program through the National

Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (MSIP) (No. 2007-0056094) and (No. 2013-055175).

REFERENCES

- 1. Mizuno, N., U. Baxa, and A.C. Steven, *Structural dependence of HET-s amyloid fibril infectivity assessed by cryoelectron microscopy*. Proceedings of the National Academy of Sciences, 2011. **108**(8): p. 3252-3257.
- 2. Yang, L., G. Song, and R.L. Jernigan, *Protein elastic network models and the ranges of cooperativity*. Proceedings of the National Academy of Sciences, 2009. **106**(30): p. 12347-12352.
- 3. Bahar, I., C. Chennubhotla, and D. Tobi, *Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation*. Current Opinion in Structural Biology, 2007. **17**(6): p. 633-640.