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ABSTRACT 

The originality of this work consists in associating a path following technique, a bifurcation 

indicators and a meshless technique [1-7]. Here, we are particularly interested in the so called 

MFS-MPS (Method of Fundamental Solutions-Method of Particular Solution) for the 

simplicity of its numerical implementation and for robustness to solve partial differential 

equations with variables coefficients. MFS-MPS permits to discretize PDE’s in a meshless 

framework by combining radial functions [6] and fundamental solutions of a given operator 

[5, 3]: here we use fundamental solutions of Laplacian and Bi-Laplacian operators.  

To show the efficiency of the proposed method, we apply it to the following nonlinear 

problem (1) on square domain               where the bifurcation points and the 

eigenmodes are known analytically.  
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In (1), L  and N  represent respectively a linear and a nonlinear operator which are considered 

here as harmonic and bi-harmonic and B  is a boundary operator. 

A bifurcation point is characterized by the non-invertibility of the tangent operator

),(),(  uNDLuL ut  . The bifurcation points are found indirectly by seeking the zeros of a 

scalar function  , called bifurcation indicator that is computed along the solution path. It is 

defined from a more or less arbitrary function as follows:  
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All the unknowns           are searched in the form of a truncated Taylor expansion from a 

known solution             . 
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where   is the truncation order of the series and ‘ ’ is a control parameter. The resulting 
linear problems are discretized by MFS-MPS method with the use of multiquadric radial basis 

functions.  

This method has been successfully applied to nonlinear problems with harmonic and bi-

harmonic operators. Typical results are presented in Figures 1 and 2, in a case where   
                  . In figure 1, one sees two response curves with a quasi-

bifurcation. As often within Asymptotic Numerical Method, there is a step accumulation close 

to the bifurcation point. This basic property can be explained by the radius of convergence of 

the series that coincides with the distance to the bifurcation. Such a step accumulation is an 

efficient and simple manner to detect a bifurcation point. A second manner to detect a 

bifurcation point is illustrated in Figure 2: the zero of the indicator defined in (2) yields the 

position of the bifurcation and the null eigenvector of the tangent operator. 
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Figure 1: Solution branches by ANM-MFS-MPS Figure 2: Indicator   versus   by ANM-MFS-MPS 
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