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Material surface model  
The Gurtin and Murdoch (G-M) theory of material surfaces, [1], describes free surface (or 
interface) effects in solids within the framework of elasticity. These effects include presence 
of the surface residual stresses and modification of the surface properties, comparing with 
those of the bulk material. They occur as a result of different molecular (or atomic) 
environment existing on the boundary versus that in the interior, which changes electronic and 
mechanical interactions between the molecules (atoms), [2]. The surface effects associated 
with residual stresses and changed elastic properties are negligible in solids unless the surface 
radii of curvature are sufficiently small, as they are in the case of nano-composites. 
Consequently, the emerging possibilities of various technological applications of nano-
composites spurred significant interest in their analysis and, thus, in G-M theory.  
In the original G-M theory the material surface is essentially an elastic membrane adhering to 
the bulk material and possessing its own, independent of the bulk, constitutive equations. The 
key element of it is therefore the definition of the surface stress tensor Sσ . With this tensor 
defined in terms of surface deformation, the mechanical problem is described by the equation 
of the material surface 

 0xu = )( S][ ;    0xxnx =+⋅ )(div )()(  SSS σσ ][ , (1) 

coupled with the usual equations of elasticity within the bulk of the material and with the 
appropriate boundary conditions. In the above equation the subscript S represents the material 
surface,  divS stands for the surface divergence operator, n  is the unit vector normal to S, σ   
denotes the stress tensor in the bulk of the material and S][⋅  indicates the jump of the 
quantities enclosed in the brackets across the surface. 

Development of surface stresses 
As clearly argued in [2] (in complete agreement with the usual logic justifying appearance of 
residual stresses), if the surface layer could be separated from the bulk while retaining all 
modified intermolecular interactions, its stress-free configuration would be different than the 
surface of the stress-free bulk material. Thus, in accordance with the kinematic compatibility 
between the material surface and the bulk material expressed by Eq. (1)1, one can write 

 ie FFF ⋅= ;   
SS

FF = , (2) 

where F  and F  are the deformation gradients of the bulk material and of the material 
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surface, respectively, considering the bulk stress-free configuration as initial for the entire 
system; iF  is the material surface deformation gradient describing transition from the initial 
configuration to the stress-free configuration of that surface; eF  is the surface deformation 
gradient associated with development of stresses. It is assumed here that all of the surface 
deformation gradients are “three-dimensional”, and such that they transform the surface unit 
normal vectors associated with the  corresponding configurations into one another; the vectors 
tangent to the surface are transformed by F  and F  identically (cf. Eq.(2)2 ). With this 
understanding of the surface deformation gradients one can write 

  )()()( 1 FFFF Fi
S

def

iSeSS σσσσ =⋅== − , (3) 

where the symbol i
S
Fσ  denotes a function of only F  for any fixed iF . For convenience, the 

stress tensor Sσ  is also understood as “three-dimensional” with vanishing normal 
components. 

Comments on the surface stress formula  
Several issues associated with Eq. (3), will be discussed during the presentation. In particular:   
1. How should one define the surface residual stresses? This is important when those stresses 

are needed in calculations based on the G-M model and when their value is obtained, for 
example, experimentally. In [1] these stresses are defined as )()( 10 −== iSSS

i FIF σσσ , with I   
being the identity tensor. This is one possible definition, but the resulting surface residual 
stresses are then associated with the stress-free bulk material and, in general, violate 
Eq.(1)2. Such definition appears to be in agreement with explanation offered in [2] and it is 
used in all calculations based on G-M model known to the Authors. However, some 
experimental measuring techniques may, in fact, be providing residual stresses in the 
configuration that obeys Eq. (1)2 (see reference to Nicholson in [2]). 

2. How should the material frame indifference and isotropy be defined in the context of 
Eq.(3)? In [1] it is assumed that both of those notions apply to function )(FFi

Sσ  of Eq. (3) 
which results in  T

S
T

S
ii QFQQFQ FF ⋅⋅=⋅⋅ )()( σσ  valid for every orthogonal Q  and every 

F . Assuming IF =  this yields T
SS QQ ⋅⋅= 00 σσ , which implies that IF )( 10 −= iS fσ  with 

)( 1−
if F  being a scalar function of second order tensors. Even though postulating that 

)(FFi
Sσ  be isotropic is theoretically acceptable, the resulting conclusion seems 

unnecessarily restrictive for solid surfaces, [2]. Yet, it is ubiquitous in the analyses based 
on G-M model. It will be shown during the presentation that assumption of )( eS Fσ  being 
isotropic does not lead to such a restrictive conclusion. 

Some ramifications associated with different possible theoretical assumptions described above 
will be illustrated by means of simple numerical examples. 
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