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The present work is aim at developing a class of robust and economic Asymptotic-
Preserving [1, 2] Boltzmann-BGK equation solver (AP-BBGK). Like many of the Botlz-
mann solvers, we must address discretization problem in two domains: physical space
and velocity space. The present scheme, based on the work of [3], has the advantage of
low memory storage when solving Boltzmann equation in one and two space dimensions.
This scheme is upgraded to become Asymptotic-Preserving following ideas in [1, 2] and
implemented with an additive Runge Kutta strategy [4]. By enforcing the conservation
principle (Miuessens 2000) of Boltzmann collision operator we minimize the number of
discrete velocities in phase-space. Finally we choose to implement high-order discontin-
uous schemes to explode their flexibility in discretizing the physical domain. However
each scheme presents unique advantages when working under our new method. Here, we
choose to compare the three most popular schemes in literature: Modal Discontinuous
Galerkin (MDG) [5], Nodal DG (NDG) [6] and Correction Procedure via Resconstruction
(CPR) [7, 8] by adopting the Artificial Viscosity strategy proposed in [9] and ensure a
fair comparison. The local formulation of each method is implemented, and the present
results are compared to that of high-order WENO [10]. Preliminary results show that
the AP scheme improves the stability regions of both DG-like methods and FD-WENO
scheme; in the later it allows us to evolve information with CFL = 1.0. Preliminary con-
clusions indicate that hp-adaptation must be implemented for higher-dimensional cases
to achieve efficient computations. Comparisons between high order WENO schemes and
DG methods for Boltzmann-BGK equation using gas dynamic problems in 2D will be
presented.
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(a) 1D Riemann Problem (b) 2D Riemann Problem

Figure 1: (a) Sod’s shock tube solution with AP-BBGK scheme using NDG, MDG, CPR,
with 80 elements, 4th-order polynomials and ARK4. Artificial viscosity is used to control
spurious oscillations. (b) Solution of Configuration 12 in Lax and Liu (1998), using AP-
BBGK with WENO7 for a Kn= 1

100,000
and CFL = 1.0 in a 200x200 mesh.
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