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Abstract. A semi-continuous formulation is introduced for finding bases which minimise
the error in a specific output functional of a reduced-order model. The formulation is
advantageous in that it can be easily applied to nonlinear problems and functionals. A
general description of the approach is given, then explicit formulations are derived for the
convection-diffusion and Burgers equations. Numerical results are given for both linear
and non-linear functionals. These show substantial reductions in error, depending on
the functional considered. Optimisation of bases for a reduced-order model based on an
approximated governing equation is also described, for which large increases in accuracy
are obtained.

1 Introduction

A common approach to constructing reduced-order models (ROMs) is to obtain modes
using the Proper Orthogonal Decomposition (POD) of a reference dataset, and then
discretise the governing equations using Galerkin projection with of a subset of these
modes. Examples of such POD-ROMs include those in the fields of fluid dynamics and
turbulence [1, 2, 3, 4], structural vibrations [5], biology [6], meteorology [7], and image
processing. Truncated POD modes are optimal in the energy norm for the interpolation of
the reference data, but the output of ROM using such modes is not necessarily optimal in
the same norm. Furthermore, although a truncated set of POD modes represents the most
energetic processes within the reference data, these might not the processes of interest.
This can be the case, for example, when considering problems in acoustics, where the
perturbations of interest are much smaller in energy than the main flow. Bui-Thanh et al.
[8] addressed these issues by developing a Goal-Oriented model-constrained optimisation
procedure for identifying truncated bases. In this approach, the truncated set of modes
is optimised for the representation of a given output functional with the ROM imposed
as a constraint. This was demonstrated to provide significant increases in accuracy.
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The approach in [8] presented the construction of ROMs from large linear time-invariant
(LTI) systems, e.g. Mu̇ + Ku = F , where u(t) ∈ RN is the system state and u̇(t) is the
derivative of u(t) with respect to time. In this case M ∈ RN×N and K ∈ RN×N are
matrixes with the spatial dimensions of the reference data, while the vector F ∈ RN

defines the input to the system. As the formulation is expressed in terms of an algebraic
system, we refer to it as a Fully-Discrete Formulation (FDF) for Goal-Oriented ROMs.
Depending on the origin of the reference dataset, however, the definition of M and K is
not always clear. When the reference dataset comes from a numerical simulation, they
might be constructed from the numerical method employed. When the dataset comes
from experiments, no obvious method for constructing them exists. The precise definition
of M and K also affects the efficiency of the optimisation process, but in a way which is
difficult to anticipate. A further issue is the treatment of the boundary conditions. For
the ROM it might be useful to use alternate formulations for boundary conditions (such
as weak Dirichlet BCs) which can be difficult to implement through the derivation of M ,
K and F . Finally, the procedure to extend the FDF to nonlinear PDEs and functionals
is not entirely clear.

In this paper, we describe an alternative to the FDF, a semi-Continuous Formulation
(SCF). In this approach, the ROM and the optimisation technique are defined in a con-
tinuous setting, but the reference dataset remains discrete. This clarifies the treatment of
nonlinear PDEs and functionals, and avoids the need to define arbitrary M , K matrices.
After a brief introduction to the construction of POD ROM, the basic approach of the
SCF is described in section 2. Then the performance of the SCF is demonstrated using
three examples. The first is a simple linear model problem that considers both linear and
nonlinear functionals. The second is a nonlinear model problem. The last is a problem
that considers governing equations which only approximate the dynamics of the reference
dataset.

2 Reduced-Order Models with Discrete Basis Functions

Consider the general PDE

L(u) = f (1)

u(0) = u0 (2)

subject to appropriate boundary conditions, for which a goal functional, g, is defined

g = g(u) (3)

A ROM of (1) can be derived by assuming representing the state u(t) using a linear
combination of m basis functions,

û =
m∑
j=1

αjφj (4)

2



L. Cheng, S. Mattei, P.W. Fick, and S.J. Hulshoff

where û(t) is the approximation of u. Assuming the basis functions (φj) are defined at
discrete points, a projection matrix Φ ∈ RN×m can then be defined which contains as
columns φj, i.e. Φ = [φ1, φ2, · · · , φm]. A vector α(t) ∈ Rm contains the corresponding
modal amplitudes. The ROM and goal functional ĝ are then expressed as∫

Ω

φi(L(û)− f)dΩ = 0 (5)∫
Ω

φi(û0 − u0)dΩ = 0 (6)

ĝ = g(û) (7)

where i = 1, 2, · · · ,m.

2.1 Proper Orthogonal Decomposition

For a collection of snapshots, u(tj), j = 1, · · · , Nt, where u(tj) ∈ RN is the solution of
governing equation (1) at time tj, a reference dataset matrix U ∈ RN×Nt can be defined
as U = [u(t1), u(t2), · · · , u(tNt)] = [u1, u2, · · · , uNt ]. The POD modes can be derived by a
Singular Value Decomposition of U or Eigenvalue Decomposition of U2.

The POD basis functions can also be found by seeking an orthonormal set, Φ, where
φTi φj = 1 (i = j) and φTi φj = 0 (i 6= j), that solves the problem

Φ = argΦminE(Φ) (8)

The error measure E(Φ) between the reference data and their representation in the re-
duced space is defined in L2-norm sense

E(Φ) =
Nt∑
n=1

‖ un − ũn ‖2 (9)

where ũn =
∑m

i=1(uTnφi)φi and ‖ un ‖2= uTnun.
The POD is an optimal basis in the sense that it minimises the error given by (9).

Note that this optimality applies only to the representation of a known un in the reduced
space, ũ, not the solution of the ROM, û, i.e. ũ 6= û. It means that the error expression
yields no information regarding the accuracy of the ROM’s solution and whether û is a
good approximation of u. The POD modes thus are not necessarily optimal for other goal
functionals, for example a local gradient of the ROM’s solution.

2.2 The Semi-Continuous Formulation

The SCF leads to an optimisation problem that finds an orthonormal basis Φ which
minimises the difference between the goal functional g over [0, tf ] in the full space and
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reduced space, subject to satisfying a ROM constructed using the underlying governing
equations. The problem of determining Φ can be written as

argΦ,α minG =
1

2

∫ tf

0

∫
Ω

(g − ĝ)2dΩdt+
β

2

∫
Ω

m∑
i,j=1

(δij − φiφj)2 dΩ (10)

subject to

∫
Ω

φk(L(û)− f)dΩ = 0, k = 1, 2, · · · ,m (ROM) (11)

subject to

∫
Ω

φk(û0 − u0)dΩ = 0, k = 1, 2, · · · ,m (Initial Condition) (12)

subject to ĝ = g(û) (13)

where G is the objective functional. This approach focuses on the reduction of the error for
a particular g rather than the state u. Note that the formulation (10)-(13) is continuous
with the exception of the φk and g, which are discrete. The second term in (10) is a
regularisation term that penalises the derivation of Φ from an orthonormal set, with β as
a regularisation parameter.

The result is a constrained minimisation problem, for which we can use Lagrange
multipliers, i.e. λ(t) ∈ Rm and µ ∈ Rm, also known as adjoint state variables, to construct
Lagrangian functional L . To simplify the expression of L , one can define

E = (g − ĝ)2 G1 =
m∑

i,j=1

(δij − φiφj)2

Gk
2 = φk(L(û)− f) Gk

3 = φk(ûo − uo)

The Lagrangian functional can then be written as

L =

∫
Ω

(
1

2

∫ tf

0

Edt+
β

2
G1 +

m∑
k=1

∫ tf

0

λkG
k
2dt+

M∑
k=1

µkG
K
3

)
dΩ (14)

The optimality conditions can be derived by taking variations of the Lagrangian functional
with respect to λk, µk, αq and φq. Setting the first variation of the Lagrangian functional
with respect to λk and µk to zero, arguing that the variation of λk is arbitrary in [0, tf ],
simply recovers the ROM (11) and initial condition (12). Setting the first variation of the
Lagrangian functional with respect to αq to zero, and arguing that the variation of αq is
arbitrary in [0, tf ], yields the adjoint equation, final condition for λ and definition of µ∫

Ω

[
1

2

∂E

∂αq
+

m∑
k=1

λk
∂Gk

2

∂αq
− d

dt

(
m∑
k=1

λk
∂Gk

2

∂α̇q

)]
dΩ = 0 (15)

λq(tf ) = 0 (16)

µq = λq(0) (17)
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Taking the first derivative of the Lagrangian functional with respect to φq, arguing that
the variation of φq is arbitrary in the interval Ω and that it is zero at the boundary of Ω
(∂Ω), yields the gradient expression

δLφq =

∫ tf

0

[
1

2

∂E

∂φq
+

m∑
k=1

λk
∂Gk

2

∂φq
− d

dx

(
m∑
k=1

λk
∂Gk

2

∂φqx

)]
dt+

β

2

m∑
k=1

∂Gk
1

∂φq
+

m∑
i=1

µk
∂Gk

3

∂φq

= 0 (18)

We solve this unconstrained minimisation problem using a trust-region inexact-Newton
conjugate-gradient method [8, 9]. The gradient required by Newton’s method can be
computed efficiently by an adjoint method, by first solving the ROM (11) with initial
condition (12) to get α(t), then solving the adjoint equations (15)-(17) to get λ(t) and µ,
finally computing the gradient (18) by known Φ, α, λ and µ. In the conjugate-gradient
algorithm the Hessian matrix (H) is needed. H always appears in the form Hd, however,
so to avoid calculating H we treat Hd (Hessian-vector product) as a group, so that Hd
is defined as

Hd =
δLΦ(Φ + εd)− δLΦ(Φ)

ε
(19)

where ε represents a small increment of d. The Hessian-vector product is then approxi-
mated by the directional derivative of the gradient with respect to the search direction
[10].

As optimisation problem is not necessarily convex, the choice of initial guess is im-
portant. In [8] two strategies are proposed: (1) the initial guess is a set of POD modes;
(2) the initial guess for the case of m basis functions is chosen to be the solution of the
optimisation problem for m − 1 basis functions plus an arbitrary mth function. In the
following numerical tests, we always use a set of POD modes as an initial guess.

3 Linear PDE example

We first consider the one-dimensional linear convection-diffusion equation. The initial-
boundary value problem is given by

∂u

∂t
+ a

∂u

∂x
− k∂

2u

∂x2
= f (20)

u0 = sin(2πx) (21)

u(0, t) = 0 (22)

u(1, t) = 0 (23)

with a = 2, k = 0.1, f = 1.
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3.1 SCF for convection-diffusion

To define a ROM using the SCF, we first insert (20) in the reduced space into (14) to
get the Lagrangian functional

L (Φ, α, λ, µ) =
1

2

∫ tf

0

∫ 1

0

(g − ĝ)2dxdt+
β

2

m∑
i,j=1

(
δij −

∫ 1

0

φiφjdx

)2

+

∫ tf

0

m∑
i=1

λi

∫ 1

0

φi(û+ aûx − kûxx − f)dxdt

+
m∑
i=1

µi

∫ 1

0

φi(û0 − u0)dx (24)

As in Section 2, the ROM and initial condition are

m∑
j=1

α̇j

∫ 1

0

φiφjd+ a
m∑
j=1

αj

∫ 1

0

φiφjxdx− k
m∑
j=1

αj

∫ 1

0

φiφjxxdx

=

∫ 1

0

φifdx (25)

m∑
j=1

α0

∫ 1

0

φiφjdx =

∫ 1

0

φiu0dx (26)

Noting Φ|10 = 0 and integrating by parts, the adjoint equations are

−
m∑
i=1

λ̇i

∫ 1

0

φqφidx− a
m∑
i=1

λi

∫ 1

0

φqφixdx+ k
m∑
i=1

λi

∫ 1

0

φqxφixdx

=

∫ 1

0

[(g − ĝ)ĝ′φq]dx (27)

λi(tf ) = 0, (28)

µi = λi(0) (29)
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While the gradient is

δLφq =

∫ tf

0

(
ĝ − g)ĝ′αqdt+ 2β

m∑
j=1

φj

(∫ 1

0

φqφjdx− δqj
)

+

∫ tf

0

{(
λq

m∑
j=1

α̇jφj + α̇q

m∑
i=1

λiφi

)
+ a

(
λq

m∑
j=1

αjφjx − αq
m∑
i=1

λiφix

)

− k
(
λq

m∑
j=1

αjφjxx + αq

m∑
i=1

λiφixx

)
− λqf

}
dt

+

[
µq

m∑
j=1

αj(0)φj + αq(0)
m∑
i=1

µiφi − µqu0

]
(30)

Note that before calculating the gradient we have reduced the second derivative of φj to
the first derivative through integration by parts.

In the case of a linear PDE, the SCF can be written in a LTI form, allowing a direct
contrast with the FDF. To do so we first define the integrals in space for SCF using the
trapezoidal rule: ∫ 1

0

f(x)g(x)dx ≈
N−1∑
i=1

f̄iḡih

where f̄i and ḡi represent the average values of f and g on each interval, i.e. f̄ = fi+fi+1

2
,

and h is the length of the subinterval of integration. The integration can be written in
matrix form:

∫ 1

0
f(x)g(x)dx ≈ f̄T∆ḡ, by defining f = [f̄1 · · · f̄N−1]T , g = [ḡ1 · · · ḡN−1]T ,

and ∆ as a matrix containing only h on the diagonal. This allows the ROM and the
adjoint equation to be expressed as:

M α̇ + Kα = b (ROM) (31)

−M T λ̇+ Kλλ = bλ (Adjoint Equation) (32)

where M = Φ̄T∆Φ̄, K = a(Φ̄T∆Φ̄′) − k(Φ̄T∆Φ̄′′), b = Φ̄T∆f , Kλ = −a(Φ̄T∆Φ̄′) +
k(Φ̄′T∆Φ̄′) and bλ = Φ̄T∆(g − ĝ)ĝ′. Here the matrices M , K and Kλ are directly associ-
ated with the process of integration and differentiation required, allowing their influence
on the results to be anticipated. In FDF, one might construct M , K using an arbitrary
discretisation method for the governing equations, but the impact of the discretisation
choices on the final results is less clear. The gradient can be written in matrix form as:

δLΦ =

∫ tf

0

(ĝ − g)ĝ′αTdt+ 2βΦ(Φ̄T∆Φ̄− I) +

∫ tf

0

[
Φ(λα̇T + α̇λT )

+ (−aΦ′ − kΦ′′)λαT + (aΦ′ + kΦ′′)αλT − fλT
]
dt

+ Φ(µαT0 + α0µ
T )− u0µ

T

(33)
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Note that the definition of goal functional g in SCF remains general, i.e. not limited in
linear functions of u.

3.2 Comparison with a POD-ROM

When the goal functional is set to be the solution over the entire domain, i.e. g = u, the
SCF seeks to minimise the same error norm as POD interpolation. In this case, however,
the error is in terms of the solution û of the the ROM. Typical results are shown in Fig. 1.
The optimal modes perform slightly better than POD modes, due to the enforcement of
the model constraint.

Other goal functionals, however, illustrate the benefit of the goal-oriented approach. In
Fig. 2, SCF results are shown for a goal functional of g = u only in the region 0 6 x 6 0.5.
The optimal modes provide a clear improvement over the POD modes. For small m, the
error is reduced by one order of magnitude.

Figure 1: The error (g = u) Figure 2: The error (g = u(0 6 x 6 0.5))

Another function of interest might be g = ux|x=0, which is calculated here in the

discrete context by: ux|x=0 = u|x=h−u|x=0

h
, where h is the spatial step of the reference data.

From Fig. 3, we can see the optimal modes give a substantial improvement upon the POD
modes.

Finally a nonlinear goal functional, g = u2 for u in the region 0 6 x 6 1 and 0 6 t 6
0.249. In this case optimal modes are modestly better than POD modes (Fig. 4), as could
be anticipated by the result for g = u.
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Figure 3: Comparison error (g = u|x=h) Figure 4: Comparison error (g = u2)

4 Nonlinear PDE example

Now we consider the one-dimensional Burgers equation as the governing equation:

ut + uux −
1

Re
uxx = f (34)

u0 = sin(2πx) (35)

with homogeneous Dirichlet boundary conditions and where Re = 10, f = 1. As in
Section 2, after integrating by parts the ROM becomes (Φ|10 = 0):

m∑
j=1

α̇j

∫ 1

0

φiφjdx−
1

2

∫ 1

0

φix(
m∑
j=1

αjφj)
2dx+

1

Re

m∑
j=1

αj

∫ 1

0

φixφjxdx =

∫ 1

0

φifdx (36)

Table 1 compares the specific expressions of the convection term (aux and uux respec-
tively) in the adjoint equation and the gradient for previous and this examples.

Table 1: Different expressions for convection-diffusion and Burgers example

Convection-diffusion Burgers

Adjoint equation −a
m∑
i=1

λi

∫ 1

0

φqφixdx −
m∑
i=1

λi

∫ 1

0

φqφix

( m∑
j=1

αjφj

)
dx

Gradient
aλq

( m∑
j=1

αjφjx

)
−

aαq

( m∑
i=1

αiφix

)
( m∑

j=1

αjφj

)
λq

( m∑
j=1

αjφjx

)
−

( m∑
j=1

αjφj

)
αq

( m∑
i=1

αiφix

)

9



L. Cheng, S. Mattei, P.W. Fick, and S.J. Hulshoff

Fig. 5(a) shows the results for g = u (0 6 x 6 1). The reduction in the error is not
more than 5%, so in this case the model constraint does not add substantially to the
accuracy of the ROM. When g = u (0 6 x 6 0.5), the optimal modes are much better
than POD modes (Fig. 5(b)).

(a) g = u (0 6 x 6 1) (b) g = u (0 6 x 6 0.5)

Figure 5: Comparison the error

Fig. 6 shows results for the nonlinear goal functional g = u2, for u in the region
0 6 x 6 1 and 0 6 t 6 0.499. In this case there is a modest improvement, in spite of the
lack of improvement for the g = u case.

Figure 6: Comparison the error when g = u2

10



L. Cheng, S. Mattei, P.W. Fick, and S.J. Hulshoff

5 An Approximate PDE example

In this section we use the SCF to find optimal modes when the governing equation
used for the ROM is a PDE that only approximates dynamics of the known dataset.
Specifically, we consider the approximation of solutions of the Burgers equation using the
convection-diffusion equation. For the latter k = 1

Re
, f has the same value as that in

Burgers equation used to generate the reference data, and a equals ¯̄u, where

¯̄u =
1

N

1

Nt

N∑
j=1

Nt∑
i=1

uij (37)

Fig. 7 shows results for g = u for which the SCF modes are substantially more accurate.
In this case the effect of the model constraint is large, allowing the SCF modes to partially
compensate for the inaccuracy of the PDE approximation.

Figure 7: The error versus number of modes for approximated PDE when g = u

6 Conclusions

In this paper a semi-continuous formulation (SCF) for determining Goal-Oriented
ROMs is presented. In contrast with a fully-discrete formulation, the SCF does not
rely on priori specification of discretisation matrices, the choice of which is not obvious
when using experimental data as reference data, and whose effects on the results of the
procedure are difficult to anticipate. The SCF separates the approximations used for the
ROM and the processing of the discrete reference data, which avoids the specification of
discretisation matrices and clarifies the treatment of nonlinear PDEs and goal functionals.

Results from linear and non linear model problems confirm that the benefits of using
a goal-oriented approach can be substantial, particularly when only part of the domain
is of interest. In all cases improvements over POD-ROMs where observed, but for goal
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functionals close to that minimised by POD interpolation, the benefits were significant
only when the governing equation used to derive the ROM roughly approximated the
dynamics of the reference data.
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