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Abstract. The boundary value problem of torsion of solid cylinder is analyzed for a class
of hyperelastic materials that exhibit the power law type dependence of the strain energy
density on the magnitude of the deformation gradient. The Saint Venant hypotheses
are generalized by including the non-homogeneous longitudinal and radial deformations.
A non-linear variational problem with respect to the function of the radial/surface de-
formation, the function of the longitudinal deformation, the normalized torque and the
normalized axial force is formulated. The asymptotic analytical solutions are obtained
for the hard device torsion and for large angles of twist. They illustrate the power law
type dependencies of the axial force and the reaction torque on the angle of twist with the
exponents p and p− 1, respectively. For Treloar (neo Hookean) materials with p = 2 the
classical results can be obtained. The finite element analysis of the hard device torsion is
performed by Matlab. The results indicate that for a homogeneous class of materials and
large angles of twist non-homogeneous radial/surface deformation can be observed.

1 INTRODUCTION

The classical Saint Venant’s theory of torsion does not describe the well-known Poynt-
ing effect [1]-[5], that is the appearance of the axial force if the circular specimen is
subjected to a twist in a hard device or the axial elongation in the case of soft loading by
a torque. This effect can be analyzed within the non-linear theory of elasticity by the use
of Rivlin’s universal solution for pure shear deformation of a homogeneous and isotropic
non-linear elastic material [2]. The results show that the axial force and the change in
the length of a cylindrical specimen are proportional to the the square of the specific
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twisting angle (twisting angle over the unit length of the specimen) and agree well with
experimental data [1], [5].

Not only the axial but also the radial deformation effects can be observed as the
twisting becomes essential. The variational asymptotic solutions given in [6] indicate that
the radial strain is proportional to the square of the twist and is non-linearly distributed
over the radial coordinate for solid and hollow circular cylinders. However, the analysis
presented in [6] is limited to linear-elastic materials. For large angles of twist, for non-
linear elastic materials and for the hard device torsion both the radial and the axial
strains are expected to be non-uniform with respect to axial coordinate such that ring-
type wrinkles may arise on the surface of the specimen. Non-uniform radial deformation
effect is not analyzed in the available theories of torsion [7]. Although cross section
warpings are considered for prismatic solids, [7]-[9], these effects are not essential for
cylinders and cannot be related to the radial deformation.

In this paper we recall governing equations of the non-linear theory of elasticity to
study the torsion of circular solid bars. We generalize Saint Venant’s hypotheses by
including the non-homogeneous longitudinal and radial deformation. Applying the general
variational principle we reduce a three-dimensional problem to the one-dimensional one
with respect to the axial coordinate. The investigated variational functional includes two
independent functions - the function of radial/surface deformation and the function of
the longitudinal deformation and two independent variables - the normalized torque and
the normalized axial force. We consider a class of non-linear elastic materials that exhibit
the power law type dependence of the strain energy density on the magnitude of the
deformation gradient. For different values of the exponent p several classical potentials
can be considered. As an extension of the previous work to the non-linear torsion of
circular solid bars we analyze the following problems

• According to the classical results the axial force or the change in the length of are
related to the square of the specific twisting angle. The classical solution is limited
for Treloar (neo Hookean) materials with p = 2. Below we address an analysis for a
class of materials with p > 1. For hard device torsion derive an asymptotic formula
that estimates the axial force and the reaction torque for large angles of twist.

• For hard device torsion we analyze the radial deformation effects. For p = 2, i.e. for
Treloar (neo Hookean) materials we derive the second order essentially nonlinear
differential equation for the radial deformation function. To study the general case
we perform a numerical finite element analysis by Matlab.

Let us recall the basic equations of the non-linear theory of elasticity [8], [9]. Consider
a solid that occupies a domain Ω ⊂ R3 in the reference (undeformed) configuration. Every
point X takes the position x = X + u in the actual (deformed) configuration, where x
is the mapping and u is the displacement. The mappings are assumed to be invertible
and orientation-preserving with the gradient F = (∇x)T such, that detF > 0 in Ω, where
∇ = ∂/∂X is the Hamilton operator and the superscript T denotes the transpose.
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The finite deformation of elastic materials is characterized by the energetic pair (F,Σ)
in the reference configuration, where Σ is the first (non-symmetric) Piola-Kirchhoff stress
tensor.

An elastic material is described by a response function Σ = Σ̂(X,F) [8], [9]. For a
hyperelastic material the non-negative scalar potential W exists, such that W (X, I) = 0,
where I is the second rank unit tensor, and Σ̂(X,F) = ∂W (X,F)/∂FT for all tensors
F and almost all points X ∈ Ω. For an isotropic material the potential is a function
of principal invariants of a strain measure, for example the left Cauchy-Green tensor
B = F · FT [8], [9], the Hencky logarithmic tensor H = ln

√
B [10], [11] or principal

values of the left stretch tensor Λ = B1/2. All descriptions are equivalent. The potential
necessarily satisfies the material indifference principle [9]. For homogeneous materials
Σ̂,W = const(X).

For incompressible materials detF = 1, while for compressible materials
|Σ̂(X,F)| → ∞, W (X,F) → +∞ if detF → +0, i.e. to compress a volume to a

point an infinite load and energy are required [8], [9]. Here and below |F| = (Fα
i Fα

i )1/2,
the Latin subscripts refer to initial configuration, while the Greek superscripts refer
to actual configuration, i, α = 1, 2, 3. Here and furthermore the Einstein summation
convention is applied.

2 BOUNDARY VALUE PROBLEM OF TORSION OF CYLINDRICAL
BAR

Consider the following boundary value problem. The solid Ω ⊂ R3 with the Lipshiz
boundary is subjected to the following quasi-stationary loads: the volume force with the
density g in Ω, the surface force with the density P on a part of the boundary Γ2 and the
displacement uγ on the part of the boundary Γ1, while Γ1 ∪ Γ2 = ∂Ω, Γ1 ∩ Γ2 = ∅ and
area(Γ1) > 0.

As shown in [12] and [13] the weak solution of the boundary value problem for a
hyperelastic solid is a displacement that provides a global minimum of the total energy
functional

u∗ = arg inf{I(u) : u ∈ V } , (1)

I(u) =

∫

Ω

W (X,∇u(X) + I) dΩ− A(u) ,

A(u) =

∫

Ω

〈g,u〉(X) dΩ +

∫

Γ2

〈P,u〉(X) dγ ,

〈Q,u〉(X) =

u(X)∫

X

Qα(X,v)dvα ,
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where V = {u : Ω → R3; u(X) = uγ(X), X ∈ Γ1} is a set of kinematically admissible
displacements, 〈∗,u〉 and A(u) is the specific and the total work of external forces for the
displacement u, respectively.

Let us place the origin of the coordinate system in the midpoint of the cross section
in left edge of the cylindrical bar. Following [14] we consider mapping in normalized
cylindrical coordinates of the reference state

x(aρ, ϕ, lz) = X(ar, ϕ + ψ, lz + lw) ,

where ρ ∈ [0, 1] is the radial coordinate, ϕ ∈ [0, 2π) is the circumferential coordinate,
z ∈ [0, 1] is the axial coordinate, a is the radius of the cross section and l is the length of
the bar.

Let us apply the semi-inverse Saint Venant’s method with the following generalized
hypotheses:

1) ψ = αz, where α angle of cross-section rotation of the right edge (angle of twist),

2) r = ρf(z), where the function f describes the surface deformation,

3) w = w(z) describes the longitudinal deformation

4) the cylindrical surface is load-free and the volume forces are absent,

5) the material is incompressible.

In what follows we will use the angle of twist α (rad), as well as specific angle of twist
α0 = α/l (rad/m).

Let us recall that the Saint Venant theory of torsion is based on the same hypotheses
with f(z) ≡ 1 and w(z) ≡ 0 [3]. In [7] and [10] the functions f(z) = const(z) and w(z) =
Cz with C = const are applied. The hypotheses formulated in this paper generalize the
classical approach toward the consideration of the radial and the axial deformations while
the basic (first) Saint Venant hypothesis of the plane cross sections is retained.

With the formulated hypotheses the components of the deformation gradient are

F(f, w) =




f 0 ηρf ′

0 f αηρf
0 0 1 + w′


 ,

where η = a/l and (·)′ denotes the derivative with respect to the coordinate z.
In the case of the soft device torsion (the torque is applied in the right edge) the

boundary conditions for the introduced functions are: f(0) = 1, f(1) = 1 and w(0) = 0.
For the hard device torsion the additional condition w(1) = 0 must be satisfied.

Without loss of generality let us consider the following potential [15]-[17]

Wp(F) = 3µ p−1
(∣∣∣F/

√
3
∣∣∣
p

− 1
)

, detF = 1 , (2)
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where µ > 0 is the constant shear modulus for infinitesimal strains. The basic feature of
the potential (2) is the power law type dependence of the strain energy density on the
magnitude of the deformation gradient with the exponent p.

Let us compare (2) with several well-known potentials of the elasticity theory. To this
end we recall that the principal invariants of the left Cauchy-Green tensor are

I1(B) = trB = |F|2 , I2(B) =
1

2

[
(trB)2 − tr

(
B2

)] ∼ |F|4 ,

I3(B) = detB = (detF)2 .

For example, the very popular Mooney-Rivlin potential [8], [9]

WMR =
1

2
µ (λ(I1 − 3) + (1− λ)(I2 − 3)) ,

where 0 < λ ≤ 1 is a dimensionless parameter has only two fixed powers with respect to the
magnitude of the deformation gradient, namely WMR ∼ |F|4 for λ < 1 and WMR ∼ |F|2
for λ = 1. For p = 2 the strain energy function (2) coincides with the Treloar or the
neo-Hookean potential [15]. This is the special case of the Mooney-Rivlin model for
λ = 1.

The detailed analysis for the parameter p = 1 is presented in author’s works [16]-[23].
In this case the limit load (the torque and/or the axial force) exist above which the static
equilibrium state is not possible. For such conditions the variational problem (1) provides
either discontinuous solutions or no solution.

Below we analyze torsion for p > 1. As shown in [15] the range 1 < p < 2 can be
identified for such materials which exhibit large reversible strains up to 400-500 %. Exam-
ples include rubber type or foam materials operating in water, oil or liquid hydrocarbon
medium.

With the assumed hypotheses and the potential (2) the variational functional (1) takes
the following form

Ip(f, w) =
31−p/2

p

1∫

0

1∫

0

(
η2ρ2f ′2 + (2 + α2η2ρ2)f 2 + (1 + w′)2

)p/2

ρ dρdz

−Dϕα−Dzw(1) ,

where Dϕ = Mz/(2πa2µ l) is the normalized torque and Dz = Pz/(2πa2µ) is the normal-
ized axial force applied to the right edge of the bar. After the integration over the variable
ρ we obtain the main variational problem with respect to the functions (f, w)

(f∗, w∗) = arg inf { Ip(f, w) : (f, w) ∈ V } , (3)
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Ip(f, w) =
31−p/2

p(p + 2)η2

1∫

0

[(
η2f ′2 + (2 + α2η2)f 2 + (1 + w′)2

)p/2+1

− (
2f 2 + (1 + w′)2

)p/2+1
] (

f ′2 + α2f 2
)−1

dz −Dϕα−Dzw(1) ,

V =
{

(f, w) ∈ (
W 1,p(0, 1)

)2
: f(0) = 1, f(1) = 1, w(0) = 0

}
.

Let us show that for p = 1 limit loads in the variational problem (3) exist. Indeed, let us
consider a hard device torsion with f(z) ≡ 1 and w(z) ≡ 0. Then for α À 1 the functional

in (3) yields the asymptotic relation I1 ≤ α
(√

3
3

η −Dϕ

)
. Therefore, for Dϕ > D∗

ϕ =
√

3
3

η

the energy functional does not bounded below, since I1 → −∞ as α → ∞. For a pure
tension with Dϕ = 0 and, for example, the following sequence fk(z) = (1 + kz)−1/2,

wk(z) = kz2/2 (k ∈ N) the energy functional does not bounded below for Dz > D∗
z =

√
3

2
.

The Poynting effect can be characterized by the following relationships [1]-[5]

1) α 7→ Dz for torsion in a hard device with the given angle α and axially fixed edges,
that is for w(1) = 0;

2) α 7→ w(1) for torsion in a soft device with the given torque Dϕ without the axial
force, i.e. for Dz = 0. To analyze this case the relationship α 7→ Dϕ must be found.

From the incompressibility condition detF = f 2(1 + w′) = 1 and the boundary con-
dition w(0) = 0 the following relations for the axial and the radial displacements can be
obtained

w′(z) = f−2(z)− 1 , w(z) =

z∫

0

f−2(q) dq − z . (4)

3 ESTIMATION OF THE AXIAL FORCE FOR HARD DEVICE TORSION

To find the relationship between the axial force and the angle of twist let us apply the
principle of virtual displacements. To this end we compute δIp(f, w) = 0 for the virtual
displacement δw(1) [8], [9]. With the variational form of the incompressibility condition
(4) δf = −1

2
f 3δw′ and after integration by parts we obtain

Dz = −α2Ψp (α, η, f ′(1)) , (5)

Ψp =
31−p/2

p(p + 2)

η2

R

[(
p

2
− 3

R

)
(R + 3)p/2 +

31+p/2

R

]
,
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where R = η2
(
α2 + f ′2(1)

)
. The value f ′(1) = f ′(1 − 0) must be computed by solving

the variational problem (3) with the incompressibility condition (4) and the boundary

condition w(1) = 0 in the form
1∫
0

f−2(z) dz = 1.

Assuming that the solution of the variational problem (3) is regular, i.e. the value
f ′(1− 0) remains limited for any angle of twist, the following asymptotic form of Eq. (5)
for α À 1 can be obtained

Dz ≈ −kz αp , kz =
31−p/2

2(p + 2)
ηp . (6)

Equation (10) coincides with the relation Dz ∼ −αp found by [17] from numerical tests.
To find a closed form analytical expression for α 7→ Dz for all values of p the solution

of the non-linear variational problem (3) is required. However for p = 2, i.e. for the
neo-Hookean material this expression can be found without the variational functional (3),
as shown in [3], [8], [9]

Dz = −1

8
η2 α2 . (7)

The relation (7) provides the estimation of the axial force for the neo-Hooke material for
any angle of twist. However, for small strains all available models of the non-linear theory
of elasticity can be reduced to the classical quadratic Hooke’s potential [8], [9]. Therefore,
for small angles of twist Eq. (7) is valid for any elastic material. Let us note that the
minus sign in Eq. (7) shows that the axial force is compressible [2], [3], [5], [14].

Let us rewrite Eq. (7) for the axial force under small angles of twist

Pz = −kz α2
0 , kz =

1

4
µπ a4 . (8)

As an example let us compute the axial force for the bar with the radius of the circular
cross section a = 5 · 10−3 (m), made from steel with the Young’ modulus E = 210 (GPa),
the Poisson’s ratio ν = 0.282 and the shear modulus µ = 0.5 E/(1 + ν) ≈ 82 (GPa) at
the room temperature. Equation (8) yields kz ≈ 40.2 (N·m2/rad 2).

The reaction torque for a test in a hard device under small angles of twist |α0| ¿ 1 is
computed by Mz = kϕα0, where kϕ = 1

2
µπ a4 ≈ 80.4 (N·m2/rad) [9]. For example, for

α0 = 10 (grad/m) ≈ 0.175 (rad/m) the axial force is Pz ≈ −1.22 (N), while the torque
takes the value Mz ≈ 14.1 (N ·m).

For small angles of twist the value of the axial force is negligible. This is the reason
why the Poynting effect can only be observed in real and numerical tests only for large
angles of twist [5], [14].

4 ESTIMATION OF THE REACTION TORQUE FOR HARD DEVICE
TORSION

Let us consider Dz = 0 and an admissible deformation describing the incompressible
pure torsion of the rod within the framework of the classical Saint-Venant model of plane
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cross-sections with ψ = αz, f(z) ≡ 1 and w ≡ 0. In this case the energy functional has
the following form

Ip =
9

α2η2p(p + 2)

[(
1 +

α2η2

3

)p/2+1

− 1

]
− α Dϕ + const .

The function Ip is convex with respect to α for p > 1. Therefore, from the necessary
condition of stationarity dIp/dα = 0 the following relationship can be obtained

Dϕ =
3

α p

(
1 +

α2η2

3

)p/2

− 18

α3η2p(p + 2)

[(
1 +

α2η2

3

)p/2+1

− 1

]
. (9)

For α À 1 the asymptotic form of (9) is

Dϕ ≈ kϕ αp−1 , kϕ =
31−p/2

p + 2
ηp . (10)

Equation (10) coincides with the relation Dϕ ∼ αp−1 found by [17] from numerical tests.
For p = 2 the relation (9) is linear because Dϕ(α) = α η2/4 and coincides with the

classical formula of Saint-Venant’s theory of torsion of prismatic rods [7]. Let us note
that the relationship (9) is only approximate because the Poynting effect, i.e. change of
the length is ignored.

5 ESTIMATION OF RADIAL DEFORMATION FOR HARD DEVICE
TORSION

For the analysis of the radial deformation under hard device conditions, i.e. for the
given angle α and the condition w(1) = 0, the variational problem (3) with the incom-

pressibility condition
1∫
0

f−2(z) dz = 1 must be solved. The incompressibility condition

can be considered by the use of the Lagrange multiplier [9], [13]. As a result we have to
find a stationary value of the following functional

(f∗, λ∗) = arg stat {Kp(f, λ) : (f, λ) ∈ V×R } , (11)

Kp(f, λ) =

1∫

0

(
η2f ′2 + (2 + α2η2)f 2 + f−4

)p/2+1 − (2f 2 + f−4)
p/2+1

f ′2 + α2f 2
dz+

+λ

1∫

0

(
f−2 − 1

)
dz ,

V =
{
f ∈ W 1,p(0, 1), f−1 ∈ L2(0, 1) : f(0) = 1, f(1) = 1

}
.
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For the parameter p = 2 (neo-Hooke’s material) the necessary condition of the stationarity
of K2(f, λ) on the manyfold V×R is the following boundary value problem

f ′′ − (
ω2 + α2

)
f + ω2f−5 + ξf−3 = 0 , (12)

f(0) = 1 , f(1) = 1 ,

1∫

0

f−2(z) dz = 1 ,

where ω = 2 η−1 and α are given values and ξ = λ η−4 has to be found. It is evident, that
the trivial solution f∗(z) ≡ 1, λ∗ = α2η4 (i. e. ξ∗ = α2) satisfies Eq. (12).

It is natural to assume, that for small angles of twist |α| ¿ 1 the radial deformations
are small and can be represented by the function f(z) = 1 + q(z), where |q(z)| ¿ 1 is the
solution of the following linearized boundary value problem

q′′ − (6 ω2 + 3 ξ)q = −ξ ,

q(0) = 0 , q(1) = 0 ,

1∫

0

q(z) dz = 0 .

The problem has infinite number of solutions. For ξ = 0 the solution is trivial q(z) ≡ 0,
and for ξ = −2ω2 − 4

3
x2

k (k ∈ N) we obtain

qk(z) =

(
1

3
+

ω2

2x2
k

)
sin(2xkz) (tan(xkz)− xk) ,

where xk are positive roots of the transcendent equation x = tan(x). We observe, that
xk ≈ (2k + 1)π/2 (k ∈ N). The energy functional takes the global minimum value on the
trivial solution.

For the general case the problem (11) is solved numerically applying the finite element
method. To this end the interval [0, 1] is divided by n line elements of the same length
and the piecewise linear approximation of the unknown function is applied. As a result
the problem (11) is reduced to the minimization of the non-linear function of (n + 1)
unknown nodal values of f(z) with two linear constraints on the boundaries and one
non-linear constraint due to the incompressibility.

The computations were performed by Matlab R2012a (version 7.14.0.739). The finite
element mesh was created with n = 100. The numerical minimization with constraints
was performed by the use of the Matlab function fmincon specifying the initial guess.

It was found that with the trivial guess f (0)(z) ≡ 1 the constrained minimum of the
functional coincides with the trivial solution for all input parameters of the problem. For
the guess in the form f (0)(z) = 1 + 0.1 ∗ sin(πz) and for the parameters p = 1.5, α = 2π
and η = 0.05 the constrained minimum is shown in Fig. 1. The non-uniform radial
deformation with the amplitude not greater than 1,5 % of the cross section radius can be
clearly observed. The splashes at the ends of the interval can be explained by the strong
ravines of the functional and are the computational errors.
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Figure 1: The radial deformation function q(z) = f(z)−1 for parameters p = 1.5, α = 2π and η = 0.05.
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