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In this paper, a level set-based parameterization method is proposed to design the three-phase
composite material with specified thermal expansion coefficient. The composites are
comprised by periodic base cells, and made of a three-phase material (two different material
phases and a void phase). The numerical homogenization method is applied to compute
effective elastic and thermal expansion properties of the composite based on a finite-element
discretization of the base cell. The optimal distribution of material phases within the
periodical unit cell is found using level set-based parameterization method under certain
constraints, such as elastic symmetry, volume fractions of the constituent phases, and lower
limit of bulk modulus. A MATLAB program is developed to conduct the composite material
design and the results demonstrate that materials with zero and negative effective thermal
expansion coefficients can be achieved by three-phase materials.
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Introduction

Topology optimization has been identified as one of the most promising structural
optimization disciplines due to its establishing an overall framework of the conceptual design
without prior knowledge of an optimal shape and size design. The discipline has experienced
considerable progress during the past decades, and is being extended to a wide variety of
engineering areas, especially since the prominent research work of Bendsge and Kikuchi [1]
and the recently published works of Wang et al. [2] and Allaire et al. [3]. Topology
optimization actually consists of determining the best arrangements of a prescribed sum of
material to iteratively eliminate and redistribute them throughout the design space to get the
best structural performance. Topology optimization has been identified as one of the most
promising structural optimization disciplines due to its establishing an overall framework of
the conceptual design without prior knowledge of an optimal shape and size design.

The level set methods were originally developed for tracking, modelling, and simulating the
evolution of moving boundaries with topology changes of merging and breaking naturally.
They have found a wide range of successful applications, such as in fluid mechanics, solids
modeling, computer animation, material science, crack propagation, and image processing.
Sethian and Wiegmann [4] are among the first researchers to initially introduce the level set
methods into structural optimization areas with an Eulerian representation, in which the shape
and topology changes of the design boundary are achieved in accordance with the equivalent
stresses on the boundaries. A family of level set structural optimization works has been
reported using an implicit boundary representation. The highlight of these works is to bridge
the classical shape derivative with the powerful level set method. Wang and Wang [5]
introduced globally supported radial basis functions (RBFs) into conventional level set
methods to interpolate the level set function, and the original partial differential equation
(PDE) is transformed into a set of mathematically more convenient ordinary differential
equations (ODEs). Their work has explored the promising characteristics of RBF-based level
set structural optimization approaches, but further investigation is needed to study numerical
considerations such as convergence, sparseness, stability, and errors accumulation.

Here, an efficient parameterization method [6] is developed as an alternative to perform
structural shape and topology optimization. The compactly supported radial basis function
(CS-RBF) is employed to interpolate the level set function with a desirable smoothness and
accuracy. Then, the temporal and spatial initial value problem, defined as the Hamilton—
Jacobi PDE, is converted to a parametric problem. The shape functions are spatial only while
the expansion coefficients, being posed as design variables, are temporal. An efficient convex
programming is applied to solve the parametric optimization, leading to higher computational
efficiency.

Materials with specific or unusual thermal expansion behaviour are of interest from both a
technological and fundamental standpoint. Examples include materials with zero thermal
expansion or negative thermal expansion.

Zero thermal expansion materials are needed in structures subject to temperature changes
such as space structures, bridges, and piping systems. A fastener made of a negative thermal
expansion material, upon heating, can be inserted easily into a hole. Upon cooling it will
expand, fitting tightly into the hole. Three phases are used as opposed to two phases, since
one can achieve composite properties beyond those of the individual components [7]. In this
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paper we use a level set-based parameterization method to determine the distribution of two
different bulk material phases and a void phase to design 2D composites with specific thermal
expansion behaviour.

Parameterization of level set-based model

In this level set method, the interface is embedded into a higher-dimensional level set surface
as a set of constant level-sets (e.g. 2D boundary to 3D surface), compared to the zero level set
in the standard level set method [8] [9]. A level set function @ (x,t) with Lipschits continuous

is defined over a reference domain D < R (d =2 or 3). The three-dimensional structure is
embedded as follows:
Dd(x,t) >0 Vx e Q\oQ (inside)
d(x,t)=0 VxeoQnD (boundary) (1)
d(x,t1) <0 Vx e D\Q (outside)

To enable the dynamic motion, introducing the pseudo-time t into the level set function leads
to the following first-order ‘Hamilton-Jacobi type’ PDE by differentiating it on both sides
with respect to pseudo-time t:

M+ V, [V®| =0, ®(x,0) = Dy (x)
ot (2)
The normal velocity is expressed as follows:
V., =V-n —v-—vq) _dx_ Ve
" Vo| dt JVo- Vo 3)

Hence, moving boundary 1 —{x|®(x)=c3 along normal direction n-vao/veo| is

equivalent to transporting @ by solving the Hamilton-Jacobi PDE with explicit time-
marching schemes [2] [3] on a fixed Eulerian rectilinear grids. The velocity field is generally
determined using the shape derivative analysis. As aforementioned, numerical difficulties in
solving the complicated Hamilton-Jacobi PDEs limit the further application of the level set
method to topology optimization [6].

In the present work, the CS-RBF designed by Wendland [10] with desired smoothness is

introduced to interpolate the higher-dimensional level set function. We adopt the following
popular CS-RBF with C2 smoothness,

#(r) =max {0, (1-1)*} (4r +1) (Wendland - C2) (4)

Using the CS-RBF, the level set function can be described by centrally positioning the CS-
RBFs at their pre-specified knots over the whole design domain, as



N
D(x)=p(X) o= ¢(x)e, ()
i=1
with a vector of the shape functions

O(X) =[4(X),4,(X),.... 4, ()] R" )
and the expansion coefficient vector
o=[a,0,,...,ay] eR" (7)

The interplant of the level set function is uniquely determined in terms of the given
interpolating data of the level set function located at the knots, owing to the property of strict
positive definiteness of the CS-RBFs.

Topology optimization for three-phase composite

The aim of this work is to optimize microstructural topologies of the composite under given
effective thermal tensors ain and amounts of two material phases and void (three-phase in
total) within the design domain. It should also be possible to specify elastic symmetries such

as orthotropy, square symmetry or isotropy of the resulting materials. An optimization
problem including these features can be written as:

Minimize : Some function of the effective thermal coeffient ai}* ,
Variables : Distribution of Two material phases and void in the base cell,
Subject to : Constrains on volume fractions, (8)
Orthotropy, square symmetry or isotropy constrains,
Lower bound constriants on stiffness,

Bounds on design variables.

The material type, that is, material phase 1, phase 2 or void, can vary from finite element to
finite element as seen in Fig. 1. With a fine finite-element discretization, this allows us to
define complicated bimaterial topologies within the design domain. Having discretized the
design domain (the periodic base cell) with finite elements, the design problem consists in
assigning either phase 1, 2 or void to each element such that the objective function is
minimized. Since the base cell has been assumed small enough and be periodically repeated in
the material, the macro property of the periodic material is computed using homogenization
method [11].
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Figure 1: Design domain for the three-phase topology optimization problem.

Using a simple artificial mixture assumption, the local stiffness and thermal strain coefficient
tensor, c;, and o, in element e e can be written as a function of the two design variables ¢

and .
ukl (q)l ! (02) H(¢1 )((1 H((/’z )Cljkl + H(¢2 )Cukl (9)

ai? (91, 93) = (1—H(g0§)a; +H(¢’;)a§kl (10)
Where H(yp) is the Heaviside function.

For a base cell Y which is discretized by finite elements, the homogenized stiffness tensor and
thermal stress tensor can be computed by

Ijkl |Y| j O(IJ) *(IJ) C;ejqrs ( ros(kl) - g:s(kl) ) dy (11)

1 e * e i *(i
ﬂk';' :M.[Y(apq C )Cqul (‘C"I?I(J) _gl(J))dy (12)
O‘ilj-| = (Ci;-l'<|)7lﬂkl|4 (13)

wherec! is the effective stiffness tensor, g' is the effective thermal stress tensor, o'is the

effective thermal strain tensor, £°and &*are the unit test strain fields and the strains tensor
with the displacement field, |Y|is the volume of the cell.

Design Examples

In this section, we investigated by unusual examples for three-phase composites to illustrate
the effectiveness of the proposed scheme. The phase data are taken as E, =E, =1,

v,=v, =03, =1,a, =10. We consider the design material to achieve zero and negative
effective thermal expansion with horizontal, vertical and diagonal geometric symmetry is



specified. The volume fractions are prescribed to be ¢, =40%, c, =10% and the volume of
void is ¢, =50% and there is a lower bound of effective bulk modulus is constraintk™ > 0.05.
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Figure 2: Cases (a) (b) (c): optimal microstructures for zero effective thermal strain
coefficient with different initial design;Cases (d): optimal microstructures for negative
effective thermal strain coefficient
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Figure 3: Bounds for three-phase design example. The circles with letters a-d denote the
obtained values for the microstructures shown in Figure 2.

TABLE I. Thermoelastic parameters for optimal microstructures

Case Obijective a" KkH
@) at'=0 0.0005000 0.067
(b) at'=0 0.0002996 0.0622
(©) o = 0.0005088 0.0992
(d) at'=-05 -0.5000000 0.0525

The resulting topologies are shown in Figure 2 and their effective properties are shown in
Table 1 and plotted as small circles in Fig. 3. There is a good agreement between the effective
properties is observed and two property bounds, the old and new theoretical bounds are given
by [12] and [13], respectively. Design cases (a) and (c) in Figure 2 demonstrate how,
topologically, very different microstructures can have (almost) the same value of the objective
function. The only difference among the three cases is the initial design. It is due to that the
topology optimization problem is very prone to converge to local minima.

The actual mechanisms behind the extreme thermal expansion coefficients of the material
structures can be difficult to understand. From the optimal microstructure topologies, we can
estimate that the displacements, due to an increase in temperature of the microstructure appear
to be contact between parts of the microstructure. When allowing low bulk modulus, the main
mechanics behind the negative thermal expansion is the re-entrant cell structure having multi-
material components which bend and cause large deformation when heated. The multi-
material interfaces of design examples bend and make the cell contract, similar to the
behaviour of negative Poisson’s ratio materials [14].

Conclusions

We have applied a level-set based parameterization method to design material microstructures
with specified thermoelastic properties. For the topology optimization method in general, the




results in this paper show, that the method produces designs which are optimal indeed. We
note that the method is applicable to design of smart materials. In a future paper, the
procedure described here will be used to find the structures that optimize the bio-material. The
method can also be modified to handle three-dimensional microstructures. The extension to
three dimensions is straightforward, but computer time will increase dramatically.
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