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In this paper, a level set-based parameterization method is proposed to design the three-phase 
composite material with specified thermal expansion coefficient. The composites are 
comprised by periodic base cells, and made of a three-phase material (two different material 
phases and a void phase). The numerical homogenization method is applied to compute 
effective elastic and thermal expansion properties of the composite based on a finite-element 
discretization of the base cell. The optimal distribution of material phases within the 
periodical unit cell is found using level set-based parameterization method under certain 
constraints, such as elastic symmetry, volume fractions of the constituent phases, and lower 
limit of bulk modulus. A MATLAB program is developed to conduct the composite material 
design and the results demonstrate that materials with zero and negative effective thermal 
expansion coefficients can be achieved by three-phase materials. 
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Introduction 
 
Topology optimization has been identified as one of the most promising structural 
optimization disciplines due to its establishing an overall framework of the conceptual design 
without prior knowledge of an optimal shape and size design. The discipline has experienced 
considerable progress during the past decades, and is being extended to a wide variety of 
engineering areas, especially since the prominent research work of Bendsøe and Kikuchi [1]  
and the recently published works of Wang  et al. [2] and Allaire et al. [3]. Topology 
optimization actually consists of determining the best arrangements of a prescribed sum of 
material to iteratively eliminate and redistribute them throughout the design space to get the 
best structural performance. Topology optimization has been identified as one of the most 
promising structural optimization disciplines due to its establishing an overall framework of 
the conceptual design without prior knowledge of an optimal shape and size design.  
 
The level set methods were originally developed for tracking, modelling, and simulating the 
evolution of moving boundaries with topology changes of merging and breaking naturally. 
They have found a wide range of successful applications, such as in fluid mechanics, solids 
modeling, computer animation, material science, crack propagation, and image processing. 
Sethian and Wiegmann [4] are among the first researchers to initially introduce the level set 
methods into structural optimization areas with an Eulerian representation, in which the shape 
and topology changes of the design boundary are achieved in accordance with the equivalent 
stresses on the boundaries. A family of level set structural optimization works has been 
reported using an implicit boundary representation. The highlight of these works is to bridge 
the classical shape derivative with the powerful level set method. Wang and Wang [5] 
introduced globally supported radial basis functions (RBFs) into conventional level set 
methods to interpolate the level set function, and the original partial differential equation 
(PDE) is transformed into a set of mathematically more convenient ordinary differential 
equations (ODEs). Their work has explored the promising characteristics of RBF-based level 
set structural optimization approaches, but further investigation is needed to study numerical 
considerations such as convergence, sparseness, stability, and errors accumulation.  
 
Here, an efficient parameterization method [6] is developed as an alternative to perform 
structural shape and topology optimization. The compactly supported radial basis function 
(CS-RBF) is employed to interpolate the level set function with a desirable smoothness and 
accuracy. Then, the temporal and spatial initial value problem, defined as the Hamilton–
Jacobi PDE, is converted to a parametric problem. The shape functions are spatial only while 
the expansion coefficients, being posed as design variables, are temporal. An efficient convex 
programming is applied to solve the parametric optimization, leading to higher computational 
efficiency. 
 
Materials with specific or unusual thermal expansion behaviour are of interest from both a 
technological and fundamental standpoint. Examples include materials with zero thermal 
expansion or negative thermal expansion.  
Zero thermal expansion materials are needed in structures subject to temperature changes 
such as space structures, bridges, and piping systems. A fastener made of a negative thermal 
expansion material, upon heating, can be inserted easily into a hole. Upon cooling it will 
expand, fitting tightly into the hole. Three phases are used as opposed to two phases, since 
one can achieve composite properties beyond those of the individual components [7]. In this 
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paper we use a level set-based parameterization method to determine the distribution of two 
different bulk material phases and a void phase to design 2D composites with specific thermal 
expansion behaviour.  
 
Parameterization of level set-based model 
 
In this level set method, the interface is embedded into a higher-dimensional level set surface 
as a set of constant level-sets (e.g. 2D boundary to 3D surface), compared to the zero level set 
in the standard level set method [8] [9]. A level set function ( , )x tΦ  with Lipschits continuous 
is defined over a reference domain ( 2 3)   dD R d or⊂ = . The three-dimensional structure is 
embedded as follows: 

( , ) 0  x \  (inside)
( , ) 0  x  (boundary)

( , ) 0  x \  (outside)

x
x

x

t
t D

t D

Φ > ∀ ∈Ω ∂Ω
Φ = ∀ ∈∂Ω∩
 Φ < ∀ ∈ Ω

                                                          (1) 

 
To enable the dynamic motion, introducing the pseudo-time t into the level set function leads 
to the following first-order ‘Hamilton-Jacobi type’ PDE by differentiating it on both sides 
with respect to pseudo-time t: 
 

n 0
( , ) 0,  ( ,0) ( )t
t

∂Φ
+ ∇Φ = Φ = Φ

∂
x v x x

                                                       (2) 
 
The normal velocity is expressed as follows: 
 

 
n

d
dt

∇Φ ∇Φ
= ⋅ = ⋅ =

∇Φ ∇Φ⋅∇Φ
xv v n v

                                                       (3)  
 

Hence, moving boundary { ( ) C}x xΓ = Φ =  along normal direction n = ∇Φ ∇Φ  is 
equivalent to transporting Φ  by solving the Hamilton-Jacobi PDE with explicit time-
marching schemes [2] [3] on a fixed Eulerian rectilinear grids. The velocity field is generally 
determined using the shape derivative analysis. As aforementioned, numerical difficulties in 
solving the complicated Hamilton-Jacobi PDEs limit the further application of the level set 
method to topology optimization [6]. 
 
In the present work, the CS-RBF designed by Wendland [10] with desired smoothness is 
introduced to interpolate the higher-dimensional level set function. We adopt the following 
popular CS-RBF with C2 smoothness, 
 

{ }4( ) max 0,  (1-r) (4 1) (Wendland C2)r rφ = + −                                     (4) 
 

Using the CS-RBF, the level set function can be described by centrally positioning the CS-
RBFs at their pre-specified knots over the whole design domain, as 
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T

1
(x) (x) (x)

N

i i
i
φ α

=

= ∑Φ ϕ α =                                                        (5) 

 
with a vector of the shape functions 
 

[ ]T1 2(x) (x), (x), , (x) N
Nφ φ φ= ∈ ϕ                                        (6) 

 
and the expansion coefficient vector 
 

[ ]T1 2, , , N
N= α α α ∈ α                                                    (7) 

 
The interplant of the level set function is uniquely determined in terms of the given 
interpolating data of the level set function located at the knots, owing to the property of strict 
positive definiteness of the CS-RBFs. 
 
 
 
 
 
Topology optimization for three-phase composite 
 
The aim of this work is to optimize microstructural topologies of the composite under given 
effective thermal tensors H

ijα  and amounts of two material phases and void (three-phase in 
total) within the design domain. It should also be possible to specify elastic symmetries such 
as orthotropy, square symmetry or isotropy of the resulting materials.  An optimization 
problem including these features can be written as: 
 

Minimize : Some function of the effective thermal coeffient ,

Variables : Distribution of Two material phases and void in the base cell,
Subject to : Constrains on volume fractions,
                 

H
ijα

  Orthotropy, square symmetry or isotropy constrains,
                   Lower bound constriants on stiffness,
                   Bounds on design variables.











             (8) 

 
The material type, that is, material phase 1, phase 2 or void, can vary from finite element to 
finite element as seen in Fig. 1. With a fine finite-element discretization, this allows us to 
define complicated bimaterial topologies within the design domain. Having discretized the 
design domain (the periodic base cell) with finite elements, the design problem consists in 
assigning either phase 1, 2 or void to each element such that the objective function is 
minimized. Since the base cell has been assumed small enough and be periodically repeated in 
the material, the macro property of the periodic material is computed using homogenization 
method [11]. 
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Figure 1: Design domain for the three-phase topology optimization problem. 
 
Using a simple artificial mixture assumption, the local stiffness and thermal strain coefficient 
tensor, e

ijklC  and e
ijα , in element e e can be written as a function of the two design variables 1

eϕ

and 2
eϕ . 

 
1 2

1 2 1 2 2( , ) ( )((1 ( ) ( ) )e e e e e e
ijkl ijkl ijklC C Cϕ ϕ ϕ ϕ ϕ= Η −Η +Η                                           (9) 

 
1 2

1 2 2 2( , ) (1 ( ) ( )e e e e e
ij ij ijklϕ ϕ ϕ ϕα α α= −Η +Η                                                 (10) 

 
Where ( )ϕΗ  is the Heaviside function. 
 
For a base cell Y which is discretized by finite elements, the homogenized stiffness tensor and 
thermal stress tensor can be computed by  
 

   ( ) ( )H 0( ) *( ) 0( ) *( )1 dij ij e kl kl
ijkl pq pq pqrs rs rsY

C C y
Y

ε ε ε ε= − −∫                                        (11) 

 

( ) ( )H * 0( ) *( )1 de C e ij ij
kl pq pq pqkl kl klY

C y
Y

β α ε ε ε= − −∫                                               (12) 

 
H H 1 H( )ij ijkl klCα β−=                                                                         (13) 

 
where H

ijklC is the effective stiffness tensor, H
klβ  is the effective thermal stress tensor, H

ijα is the 

effective thermal strain tensor, 0ε and *ε are the unit test strain fields and the strains tensor 
with the displacement field, Y is the volume of the cell. 
 
Design Examples 
 
In this section, we investigated by unusual examples for three-phase composites to illustrate 
the effectiveness of the proposed scheme. The phase data are taken as 1 2 1E E= = ,

1 2 0.3ν ν= = , 1 1α = , 2 10α = . We consider the design material to achieve zero and negative 
effective thermal expansion with horizontal, vertical and diagonal geometric symmetry is 
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specified. The volume fractions are prescribed to be 1 240%,  10%c c= =  and the volume of 
void is 0 50%c =  and there is a lower bound of effective bulk modulus is constraint H 0.05k ≥ . 
 

Initial Design Optimal Design Periodic Material 

 (a)                        

(b)                             

(c)                                   

(d)                          
 

Figure 2: Cases (a) (b) (c): optimal microstructures for zero effective thermal strain 
coefficient with different initial design;Cases (d): optimal microstructures for negative 

effective thermal strain coefficient 
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Figure 3: Bounds for three-phase design example. The circles with letters a-d denote the 
obtained values for the microstructures shown in Figure 2. 

 
TABLE I. Thermoelastic parameters for optimal microstructures 

Case Objective Hα  Hk  
(a) H 0α =  0.0005000 0.067 
(b) H 0α =  0.0002996 0.0622 
(c) H 0α =  0.0005088 0.0992 
(d) H 0.5α = −  -0.5000000 0.0525 

 
 
 

The resulting topologies are shown in Figure 2 and their effective properties are shown in 
Table 1 and plotted as small circles in Fig. 3. There is a good agreement between the effective 
properties is observed and two property bounds, the old and new theoretical bounds are given 
by [12] and [13], respectively. Design cases (a) and (c) in Figure 2 demonstrate how, 
topologically, very different microstructures can have (almost) the same value of the objective 
function. The only difference among the three cases is the initial design. It is due to that the 
topology optimization problem is very prone to converge to local minima.  
 
The actual mechanisms behind the extreme thermal expansion coefficients of the material 
structures can be difficult to understand. From the optimal microstructure topologies, we can 
estimate that the displacements, due to an increase in temperature of the microstructure appear 
to be contact between parts of the microstructure. When allowing low bulk modulus, the main 
mechanics behind the negative thermal expansion is the re-entrant cell structure having multi-
material components which bend and cause large deformation when heated. The multi-
material interfaces of design examples bend and make the cell contract, similar to the 
behaviour of negative Poisson’s ratio materials [14]. 
 
Conclusions 
 
We have applied a level-set based parameterization method to design material microstructures 
with specified thermoelastic properties. For the topology optimization method in general, the 
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results in this paper show, that the method produces designs which are optimal indeed. We 
note that the method is applicable to design of smart materials. In a future paper, the 
procedure described here will be used to find the structures that optimize the bio-material. The 
method can also be modified to handle three-dimensional microstructures. The extension to 
three dimensions is straightforward, but computer time will increase dramatically.  
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