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Abstract. Partitioned coupling approaches between a black-box fluid and a black-box
structure solver allow a maximum flexibility to choose the right solver for a particular
application. This flexibility guarantees a decent time-to-solution when developing simu-
lations for complex multi-physics applications.

In this work, we document the coupling of the highly parallel Alya System by means
of the coupling library preCICE. This step allows the coupling of Alya to any other solver
including commercial tools. preCICE, furthermore, benefits from this development, since
the parallel nature of the Alya System constitutes a perfect test case for the upcom-
ing parallelization of preCICE, marking a crucial step towards partitioned fluid-structure
interaction on massively parallel systems.
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1 INTRODUCTION

Multi-physics applications are of increasing importance, since modern supercomputing
facilities make a new range of simulations feasible. On the one hand, such applications
possess a natural need to run efficiently on massively parallel system, since, otherwise,
the more detailed mathematical models would be useless. The simulation of blood flow
in the human cardiovascular system to study the risk of calcification and aneurysms, for
example, can only profit from a fluid-structure interaction (FSI) simulation, compared
to a single fluid simulation, if boundary layers of the flow are resolved carefully. This
can lead to drastic costs. To run simulation tools on massively parallel systems, on the
other hand, poses new challenges to the multi-physics community, since many approaches
cannot easily be ported to such systems. We believe that only a strong flexibility in
the development process, allows to cope with these challenges, while keeping a realistic
time-to-solution. Therefore, we favor a partitioned coupling approach, which allows to
reuse highly developed single-physics codes that already have proven to run efficiently on
modern supercomputing architectures.

The Alya system, developed at the Barcelona Supercomputing Center (BSC)) has
proven such efficiency ([1]). The library preCICE ([2]), on the other hand, developed at
the group for Scientific Computing in Computer Science (SCCS), part of the Technische
Universität München (TUM), enables coupling of different single-physics codes, providing
functionalities for coupling algorithms, mesh mapping, and communication means. In this
work, we document the coupling of the Alya module for structure simulation, SOLIDZ,
with the module for incompressible flow, NASTIN, through preCICE. The complete set-up
of the coupling and the test cases as well as the simulation and physical validation was
done by 2 part-time programmers during 5 weeks showing the potential of preCICE in
terms of flexibility and simplicity.

The remainder of this paper is organized as follows. Section 2 and Section 3 give a
brief introduction into the coupling library preCICE, and the Alya system, respectively.
Section 4 describes the set-up of the coupling, and Section 5 shows numerical results
validating the correctness of our coupling approach. The conclusion in Section 6 draws
future lines in the development of preCICE and the collaboration between the BSC and
SCCS.

2 A BRIEF INTRODUCTION TO PRECICE

preCICE (precise code interaction coupling environment) ([2]) is developed to allow for
partitioned multi-physics simulations using black-box solvers. The main goal is to achieve
an as flexible as possible coupling environment allowing for solver exchange in a nearly
plug-and-play manner. Therefore, preCICE provides a high-level library programming
interface which enables to transparently employ equation coupling schemes, data map-
ping methods for non-matching meshes, and communication means for distributed solver
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Figure 1: Main functionality and coupling principles of preCICE. In the middle, the four main groups of
functions are shown, namely equation coupling schemes, data mapping methods, communication between
distributed solvers, and surface geometry query functionality (cf. [3]). preCICE can be used for parallel
solvers (such as solver A on the left) or sequential solvers (such as solver B on the right).

executables. Solvers, once adapted to preCICE, can be exchanged without changing the
solver codes or the solver adapter, respectively. Commercial codes benefit from the black-
box compatible functionality in preCICE, which works with minimal information from
the solvers. Figure 2 gives an overview of the functionality groups and the component
deployment.

To cope with instabilities caused by the added-mass effect, which are well-known in
FSI applications with a comparable light or heavily deformable structure ([4, 5]), sophis-
ticated equation coupling schemes are necessary. The supported classical and advanced
schemes in preCICE are categorized into explicit or implicit and parallel or serial schemes.
As explicit schemes, the conventional serial staggered (CSS) procedure and the conven-
tional parallel staggered procedure (CPS) [6] have been implemented. The supported
serial implicit schemes encompass a simple Gauß-Seidel solver, dynamic Aitken under-
relaxation ([7]), and the IQN-ILS solver ([8]). Furthermore, the parallel implicit coupling
scheme V-IQN, developed in [9, 10], is available.

In case of non-matching meshes, data mapping methods need to be applied. Three
types of schemes have been implemented in preCICE: a nearest neighbor mapping [11],
nearest projection mapping [12, 13], and a radial basis function mapping [11, 14].

Additionally, in order to use distributed solver executables, preCICE provides commu-
nication means based on files, sockets, and MPI, where the MPI implementation allows
for a common or separate start-up of the solver executables.

To couple the solvers, a peer-to-peer communication layout is used reducing the com-
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1 precice::SolverInterface precice("SolverName",solverRank,solverThreadSize);

2 precice.configure("configuration.xml");

3 int dataID = precice.getDataID("DataName");

4 int[] dataIndices = precice.setMeshVertices(meshID,dataSize,coordinates);

5 setup solver data structures

6 double preciceMaxDt = precice.initialize()

7 while (precice.isOngoing()){
8 dt = min(preciceMaxDt, solverDt);

9 compute solver time step using dt

10 precice.writeBlockVectorData(dataID, dataSize, dataIndices, data);

11 preciceMaxDt = precice.advance(dt);

12 precice.readBlockVectorData(dataID, dataSize, dataIndices, data);

13 }
14 precice.finalize();

15 tear down solver data structures

Figure 2: Example for adapting a solver to preCICE. All coupling numerics and the data exchange
happens within the method advance in line 11. The original single-physics code is marked in grey.

plexity of the execution logic needed. In the alternative approach with a central server,
two (mirrored) instead of one logic of communication are needed: one for the solvers and
one for the server. When using parallel solvers, preCICE currently uses a client-server
approach, where the solver processes are clients and preCICE data belonging to the solver
processes are located in a separate process acting as a server. Note that, if both solvers
run in parallel, each of them has an own server. At the moment, the peer-to-peer com-
munication between the two solvers is serialized and becomes a bottleneck for very large
amounts of data. In upcoming work, we will focus on the parallelization of this bottle-
neck. This work constitutes a major step towards this development as the highly parallel
nature of Alya allows for a perfectly suited test case.

To adapt a solver to preCICE, the preCICE application programming interface (API)
has to be integrated into the solver code (or its programming interface). Existing solvers
have a predefined structure and changes to it can be undesirable or even impossible in case
of commercial solvers. Providing the preCICE functionality in form of a library (instead
of a framework) allows to keep the structure of a solver since API methods can be inserted
at appropriate places in the solver code. Algorithm 2 shows the logical structuring of a
solver and the main preCICE C++ API methods integrated into it (corresponding C and
FORTRAN APIs exist as well). preCICE is configured from an XML file in line 2, defining
the coupling data, interface meshes, coupled solvers and coupling functionality used in
the simulation. Vectorial data are written and read to/from preCICE in lines 10 and 12
en block from the solver’s C-array data. All coupling numerics and the data exchange
happens within the method advance in line 11. preCICE can also prescribe the time step
size of a simulation by giving an upper limit for the next time step to the solver (lines 6
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and 10). It is an upper limit, since a solver can always perform a sub-cycle, i.e., a smaller
time step.

At the moment preCICE adapters have been written for various solver including the
commercial tools Fluent and Comsol, the open source solvers OpenFOAM and Calculix,
and many in-house solvers (cf. [2, 10]).

3 A BRIEF INTRODUCTION TO ALYA

The Alya System, developed at the Barcelona Supercomputing Center (BSC), is a
computational mechanics code with two main features. First, it is specially designed to run
with the highest efficiency standards in large-scale supercomputing facilities. Second, it is
capable to solve different physics problems, each one with its own modeling characteristics.
These two main features are intimately related, which means that any complex, coupled
problem solved by Alya will be solved efficiently. This work, now, allows Alya to also
couple to other solver enabling a new range of applications, and to furthermore benefit
from the coupling and data mapping methods that preCICE is offering.

Alya is organized using a modular architecture organized in kernel, modules and ser-
vices. The kernel contains the facilities required to solve any set of discretized partial
differential equations (e.g., the solver, the I/O, the elements database, the geometrical
information, etc.), while the modules provide the physical description of a given prob-
lem. There are modules for handling incompressible and compressible flows, non-linear
solids mechanics, species transport equations, excitable media, thermal flows, n-body col-
lisions, electro-magnetism, quantum mechanics, and Lagrangian particle transport. In
the present contribution, the modules to solve the incompressible Navier-Stokes equa-
tions, called NASTIN combined with the mesh moving module ALEFOR, and the module
for solid mechanics problems, called SOLIDZ are used. Currently, NASTIN and SOLIDZ

are part of the benchmark suite of the Partnership for Advanced Computing in Europe
(PRACE)1.

Full details of the parallelization of Alya can be found in [1]. Briefly, the parallelization
is based on a master-slave strategy for distributed memory supercomputers, using MPI
as the message passing library. The master reads the mesh and performs the partition of
the mesh into subdomains using METIS (an automatic graph partitioner)2. Each process
will then be in charge of a subdomain. These subdomains are the slaves. The slaves build
the local element matrices and the local right-hand sides, and are in charge of solving the
resulting systems in parallel.

In the assembling tasks, no communication is needed between the slaves, and the
scalability depends only on the load balancing. In the iterative solvers the scalability
depends on the size of the interfaces and on the communication scheduling. During

1http://www.prace-ri.eu/
2http://glaros.dtc.umn.edu/gkhome/views/metis
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the execution of the iterative solvers, two main types of communications are required:
Global communications via MPI Allreduce, which are used to compute residual norms
and scalar products, and point to point communications via MPI Sendrcv, which are used
when sparse matrix vector products are calculated.

In NASTIN, the numerical model is a stabilized finite element method. The stabiliza-
tion is based on the Variational Multi-Scale method (VMS). The formulation is obtained
by splitting the unknowns into grid scale and subgrid scale components. This method
was introduced in 1995 [15] and established a remarkable mathematical basis for under-
standing and developing stabilization methods. In the present formulation of Alya, the
subgrid scale is tracked in time and space, making the numerical model more accurate
and stable [16]. The discretization of the Navier-Stokes equations yields a coupled alge-
braic system to be solved at each linearization step within a time loop. Algebraic solvers
for this coupled system are not robust enough, therefore the system is split to solve the
momentum and continuity equations independently. This is achieved by applying an iter-
ative strategy, named the Orthomin(1) method for the Schur complement of the pressure
[17]. At each linearization step it is necessary to solve the momentum equation twice
and the continuity equation once. The momentum equation is solved using the GMRES
or BICGSTAB method (diagonal and Gauß-Seidel preconditioners are usually efficient),
and the continuity equation is solved using the Deflated Conjugate Gradient method [18]
together with a linelet preconditioner well-suited for boundary layers.

In SOLIDZ, the equation of balance of momentum, casted in a total Lagrangian formu-
lation, is solved using a standard Galerkin method for a large deformation framework,
and a generalized Newmark time integration scheme [19], combined with the iterative
Newton-Raphson algorithm. Well known constitutive equations for small and large de-
formation elasticity models are available, and very complex solid mechanics problems can
be addressed [20].

To solve the fluid structure interaction problem, the mesh of the fluid is moved accord-
ingly with the deformation of the solid body. The Alya module which is in charge of this
movement is named ALEFOR, and calculates the mesh displacement and velocity which are
used in an Algebraic Lagrangian Eulerian formulation (ALE) included in NASTIN. The
movement of the mesh is governed by a Laplace equation and pseudo physical properties
are used to preserve the quality of the mesh near the deforming boundary.

4 COUPLING ALYA WITH PRECICE

For the coupling of the Alya modules NASTIN/ALEFOR and SOLIDZ it turns out, that
checkpointing of the unknowns plays a crucial role. By checkpointing, we understand the
treatment of the solver variables after a coupling iteration that did not lead to conver-
gence. A bad choice may hinder the convergence of the coupling algorithms, or may even
change the physical results, as, for example, forces on the structure may be accumulated
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otherwise. Table 4 gives an overview over the Alya variables used for a fluid-structure
interaction simulation, the associated Alya module, and the checkpointing strategy.

Table 1: Overview over the Alya variables used for a fluid-structure interaction simulation, the associated
Alya module, and the checkpointing strategy after a coupling iteration

module variable explanation strategy

NASTIN veloc fluid velocity keep
press fluid pressure keep
coord fluid mesh coordinates converged ⇒ update

ALEFOR dispm mesh displacement keep
velom mesh velocity keep
coord ale local ALE mesh coordinates keep

SOLIDZ displ structure displacement not converged ⇒ reload last ts.
veloc sld structure velocity not converged ⇒ reload last ts.
accel sld structure acceleration not converged ⇒ reload last ts.

5 NUMERICAL RESULTS

To validate the success of our coupling, we simulate the FSI benchmark proposed in
[21]. Subsection 5.1 gives information about the scenario set-up whereas Subsection 5.2
presents the results that we achieve, compared to the experimental data.

5.1 Scenario Description

We simulate the 2D incompressible laminar flow around a fixed cylinder with an at-
tached elastic Saint-Venant Kirchhof cantilever placed in the middle of the flow channel
with a small vertical offset. The geometry is depicted in Figure 3. At the left boundary, a
parabolic inflow profile is prescribed while, at the right boundary, we have a free outflow
condition. The top and the lower wall of the channel as well as the surface of the cylin-
der and the cantilever are no-slip boundaries. In [21], three different FSI scenarios are
proposed, which differ only in the material and flow parameters. We restrict the results
for this paper to the FSI3 benchmark with the highest Reynolds number and the lowest
density of the structure marking the most challenging setting for FSI coupling algorithms
(ρS/ρF = 1, Ae = 1.4 · 10−3, Re = 200, for details see [21]). The transient movement
of the cantilever converges to a periodic oscillation. Once converged, the movement of
the cantilever can be validated using reference values for mean values, amplitudes, and
frequencies of the forces exerted on the structure as well as the movement of point A on
the cantilever (compare Figure 3). This benchmark scenario constitutes a severe test case
for FSI simulations as it comprises large displacements and a strong coupling between
fluid and structure.
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Figure 3: Sketch of the FSI benchmark scenario proposed in [21]. The geometrical layout consists of
a channel with a fixed cylinder and an attached elastic beam. The slightly off-centric position of the
cylinder’s center (Point C = (0.2m, 0.2m)) fosters oscillations. The measurements of displacements at
the moving point A = (0.6m, 0.2m), which is at the center of the backside of the cantilever, allows for
the validation of numerical results.

5.2 Results

The simulation was carried out on the SNB partition of the MAC Cluster3 with a mod-
erate MPI parallelization (32 processors for each Alya executable NASTIN, and SOLIDZ).
Figure 4 shows the velocity magnitude, the fluid solver’s mesh, and the position of the
structure at t = 2.22s. The fluid and structure mesh consist of 35524 and 8295 nodes,
respectively. The time step size is set to 10−3. We use the V-IQN coupling algorithm (com-
pare [9, 10]), based on the difference between the actual displacement and the one from
the last time step. The associated interface least-square system uses up to 50 columns,
based on up to 5 previous time steps. At the beginning of each time step, the coupling
variables (i.e., displacement differences and forces) are extrapolated using a second order
scheme. A relative convergence criterion for displacements and forces leads to an average
coupling iteration number of 3.82 per timestep.

Figure 5 shows the position of point A, while Table 2 lists the relevant reference values,
compared to achieved results. We observe close agreement for the displacement values,
validating our coupling approach.

3http://www.mac.tum.de/wiki/index.php/MAC Cluster
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Figure 4: Velocity magnitude and grid of the fluid solver for the FSI3 benchmark scenario at t = 2.22s.
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Figure 5: Displacement values for the FSI3 benchmark scenario: (a) Displacement of point A in x-
direction; (b) displacement of point A in y-direction.
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Table 2: Displacement values at point A for the FSI3 benchmark scenario, given as mean ± amplitude
[frequency]. We calculated these values by averaging over the first 4 oscillation after t = 8s.

displ. x [10−3m] displ. y [10−3m]

Simulation −2.59± 2.42 [10.8] 2.75± 33.32 [5.4]
Reference −2.69± 2.53 [10.9] 1.48± 34.38 [5.3]

6 CONCLUSIONS

We coupled the fluid and structure solver of the highly efficient Alya System by means
of the coupling library preCICE and validated our approach with a well-established bench-
mark scenario. Now, both Alya solvers can be coupled to other solvers including com-
mercial tools. Together with these new possibilities, Alya constitutes an environment
for flexible multi-physics simulations covering a broad field of applications. In upcoming
work, we want to use these possibilities to simulate real-world 3D applications.

The serialized server processes of preCICE constitute the biggest bottleneck at the
moment, limiting the solvers to an only moderate parallelization. However, with the
coupling of the highly scalable Alya system, we have a perfect test case for the upcoming
parallelization strategies that we want to develop for preCICE.
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