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Abstract. This paper proposes two approaches to automatically adapt the computa-
tional grid at the presence of moving intersections between surface components, such as
wing-fuselage assemblies. The first method is based on the underlying CAD definition,
which is represented by Non-Uniform Rational B-Splines (NURBS). The second method
employs Radial Basis Functions (RBFs). Both methods have been tested to fix the surface
grid of an DLR F6 wing-body configuration, where the wing geometry has been deformed
at the intersection with the fuselage. The proposed strategies are suitable for both struc-
tured and unstructured computational grids and can be deployed in an industrial context
to adapt the computational grid upon deformations of surface components

1 INTRODUCTION

In the context of aircraft design, the grid generation of complex configurations involv-
ing several components, is usually an expensive and time consuming task that requires
great expertise. In order to avoid the regeneration of the computational grid, automatic
grid adaptation techniques are considered a fast reliable approach for small deformations;
commonly employed in automatic optimization loops and aeroelastic deformations. How-
ever, grid deformation algorithms face limitations at the presence of moving intersections
between surface components, such as wing-fuselage and wing-pylon-nacelle assemblies.
Without a proper treatment of the intersection between surface patches, the use of au-
tomatic optimization methods for aircraft design are limited to individual components,
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while the interaction between components can be quite relevant.
In this work, two grid adaptation algorithms are proposed and tested to fix the surface

grid at the presence of moving intersections between components. Once the surface grid is
properly adapted to the new configuration, a suitable volumetric adaptation is employed.
The first one is based on Non-Uniform Rational B-Splines (NURBS) and the second one
is based on Radial Basis functions (RBFs).

This paper is organized as follows. In section 2, NURBS are briefly introduced and the
algorithm to adapt the surface grid is explained. In section 3, the method based on RBFs
interpolation is presented. In section 4, both strategies are employed and compared to
adapt the surface grid of a wing-body configuration, where the wing geometry is deformed
at the intersection with the fuselage, while the fuselage is kept fixed. Finally, in section
5, some conclusions and future work are suggested.

2 NON-UNIFORM RATIONAL B-SPLINES (NURBS)

Non-Uniform Rational B-Splines (NURBS) is a flexible parameterization extensively
employed by Computer Aided Design (CAD) tools to represent the aerodynamic surface
of an aircraft. Furthermore, they are also the standard of geometry format definition, such
as in International Graphics Exchange Specification (IGES) interchange files. Using the
underlying CAD definition significantly reduces the integration effort necessary to carry
out multidisciplinary design. Usually it is no possible to define the aerodynamic surface
of an aircraft as a continuous surface from the geometry and several NURBS patches are
employed to assemble different sections.

The link of the computational grid, employed for simulations, and the CAD geometry,
defined by NURBS patches, requires the knowledge of the parametric coordinates {ξ, η}
of each computational grid surface vertex. Given the displacements of the control points,
it is possible to calculate the deformed geometry spatial coordinates from the parametric
ones. These parametric coordinates remain constant, except at intersections between two
NURBS surface patches, where further treatment is required.

The proposed methodology comprises the following steps [1]: First, the geometric
definition is extracted from the IGES file, as a collection of several NURBS patches.
Then, the parametric coordinates of the surface vertex involved in the deformation are
calculated; surface vertex at intersections should have two pair of parametric coordinates,
one for each intersecting NURBS. Once deformations of the geometry are applied to the
NURBS patches, Cartesian coordinates of surface vertex are calculated and detect if there
is a moving intersection, which requires to rearrange the parametric coordinates in order
to match the new intersection. Then, a surface deformation algorithm is applied using the
new intersection as boundary. Finally, the deformation is propagated to the volumetric
grid.
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2.1 Mathematical background

From the mathematical point of view, NURBS surfaces are parametric representations
defined as:

S(ξ, η) =

I∑
i

J∑
j

Ui,p(ξ)Vj,q(η)ωij Cij

I∑
i

J∑
j

Ui,p(ξ)Vj,q(η)ωij

(1)

where {ξ, η} are the parametric coordinates, U and V are the basis functions of orders
p and q respectively, while Cij are the control points and ωij the weights. One of the
most effective expression to calculate the basis functions is through a recursive algorithm,
which in some literature is referred to as the De Boor’s algorithm:

Ui,1(ξ) =

{
1 if ui ≤ ξ < ui+1

0 otherwise
(2)

Ui,k(ξ) =
(ξ − ui)Ui,k−1
ui+k−1 − ui

+
(ui+k − ξ)Ui+1,k−1

ui+k−1 − ui+1

The terms ui are coefficients from the so called knot vector, which is a sequence of real
numbers that frequently have the form {0, . . . , 0︸ ︷︷ ︸

p+1

, . . . , ui, . . . , 1 . . . , 1︸ ︷︷ ︸
p+1

}.

2.2 Treatment of the intersection

Surface vertices of the computational grid at joints and intersections may belong to
several NURBS surface patches, Sa and Sb, and are represented by two pairs of parametric
coordinates {ξa, ηa} and {ξb, ηb}, one for each NURBS, although they correspond to the
same spatial coordinates, verifying:

Sa(ξa, ηa)− Sb(ξb, ηb) = 0 (3)

To simplify the notation, let us call P and Q the spatial coordinates of the vertex
calculated from the first and second pair of parametric coordinates respectively, as is
shown in figure 1. After a movement of the intersection, these spatial coordinates no
longer represent the same location; it can be seen as the vertex has been virtually splitted
into two definitions. The goal is to recalculate the parametric coordinates to match the
new intersection.

For relatively small deformations, the new parametric coordinates can be efficiently
computed with a Newton-Raphson algorithm:

{ξa, ηa}n+1 = {ξa, ηa}n −
f

f ′
(4)
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Figure 1: A vertex that originally was at the intersection is represented by two pairs of parametric
coordinates {ξa, ηa} and {ξb, ηb}, which correspond the spatial coordinates P andQ that initially represent
the same location.

In order to improve the robustness, a two step algorithm is employed, where alterna-
tively one pair of parametric coordinates are fixed.

f = ||Sa(ξ, η)− Sb(ξ, η)||2 = ||P −Q||2 (5)

f ′ =

(
f ′ξ

f ′η

)
= 2


∂S(ξ, η)

∂ξ
∗ (P −Q)

∂S(ξ, η)

∂η
∗ (P −Q)


where we have defined the operator ū∗ v̄ = (u1v1, u2v2, u3v3) which leads f ′ a 2×3 matrix.
Multiplying f ′ by its transpose and simplifying in (4) leads to the expression

∆ξ =

[
(P −Q) · ∂S(ξ, η)

∂ξ

] ∣∣∣∣∣∣∣∣∂S(ξ, η)

∂ξ

∣∣∣∣∣∣∣∣2 − [(P −Q) · ∂S(ξ, η)

∂η

] [
∂S(ξ, η)

∂ξ
· ∂S(ξ, η)

∂η

]
2d

(6)

∆η =

[
(P −Q) · ∂S(ξ, η)

∂η

] ∣∣∣∣∣∣∣∣∂S(ξ, η)

∂η

∣∣∣∣∣∣∣∣2 − [(P −Q) · ∂S(ξ, η)

∂ξ

] [
∂S(ξ, η)

∂ξ
· ∂S(ξ, η)

∂η

]
2d

d =

∣∣∣∣∣∣∣∣∂S(ξ, η)

∂ξ

∣∣∣∣∣∣∣∣2 ∣∣∣∣∣∣∣∣∂S(ξ, η)

∂η

∣∣∣∣∣∣∣∣2 − [∂S(ξ, η)

∂ξ
· ∂S(ξ, η)

∂η

]2
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In the above expression, the symbol · is the dot product and ||ā||2 = ā · ā.
There are two pairs of parametric coordinates {ξa, ηa} and {ξb, ηb} to be calculated,

while there are only three equations available, one for each Cartesian coordinate. Each
iteration, the above algorithm projects the line PQ onto the derivatives of each NURBS
panel, until it finds the intersection. The initial values are the initial parametric coor-
dinates before the deformation, which has been either provided by the grid generator or
previously calculated using an inversion point algorithm.

2.3 Inversion point

Parametric coordinates from the computational grid are calculated as the projection
of the vertex P to the NURBS surface S that minimizes the distance [2]:

min

{∣∣∣∣∣∣S(ξ, η)− P
∣∣∣∣∣∣2} (7)

which leads to a similar expression obtained in equation (7). The essential difference is
to provide a suitable initial value, which is critical for the robustness of the algorithm,
because the presence of kinks and discontinuities, e.g. sharp edges, may cause the algo-
rithm to fail leading to collapsed computational surface elements. One approach consists
on calculating the projection of the vertex to the control polyhedra; this is the surface
formed by the control points or the equivalent second order NURBS surface. Alterna-
tively, the projection can be calculated as the intersection of the vertex surface normal,
if a reliable normal value is available. Finally, a computationally expensive, but reliable
method, consists on raster all the mid values of the knot vector.

2.4 Surface deformation

Once the parametric coordinates of the surface vertex at the intersection are recal-
culated, the surface grid should be adapted. The approach implemented is based on
minimization of a linear elasticity analogy; seeing the elements of the grid connected with
elastic edges

ā =

∑
i

(x̄i − x̄0i )φ(x̄i, ā)∑
i

φ(x̄i, ā)
(8)

In the above expression, ā is the vertex parametric coordinates, which is connected
to x̄i nodes. The notation x̄0 indicates the original position of the node, while the term
φ(x̄i, ā) is an arbitrary function that represents the elasticity module. For the present test
case we have used the following well known value that works well

φ(x̄i, ā) =
∣∣∣∣x̄0i − ā0)∣∣∣∣−2 (9)
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More elaborated expressions can be suggested to preserve the shape and/or the volume
of the finite elements. The system of equations generated, can be solved iteratively with
a Jacobi algorithm, until the residual converge to zero (x̄t+1

i − x̄ti)→ 0, as follows:

āt+1 =

∑
i

(x̄t+1
i − x̄0i )φ(x̄i, ā)∑
i

φ(x̄i, ā)
+ ā0 (10)

In this approach, by performing the adaptation on the parametric coordinates, the
surface vertex are guaranteed to be on the geometric CAD definition defined by the
NURBS patches. This method is robust, easy to implement and to parallelize; on the
downside, it has only first order convergence.

3 INTERPOLATION BASED ON RADIAL BASIS FUNCTIONS

Once the geometry has been modified we can apply mesh move techniques to transfer
the deformation from the geometry to the whole surface grid. Although, many different
techniques exist to interpolate a finite set of values, any particular choice will be strongly
influenced by the requirements imposed by the underlying physical or mathematical prob-
lem. Common desirable properties of interpolation techniques are robustness, efficiency
and monotonicity, where the last property is of special importance in order to avoid
spurious oscillations in the continuous function to be reconstructed, and hence in the in-
terpolated values. Radial basis functions (RBFs) have become a well-established method
for interpolation of both scattered and gridded data [[3], [4], [5]].

The interpolation problem can be formulated in the following way. Given a finite set
of d-dimensional centers {x̄s1, x̄s2, . . . , x̄sNs

} and its displacement field {hs1, hs2, . . . , hsNs
} we

aim to obtain a new displacement field {ha1, ha2, . . . , haNa
} to transform in a smooth and

regular way the set of evaluation nodes {x̄a1, x̄a2, . . . , x̄aNa
}. The method consists in building

a continuous spatial distribution h(x̄) using the discrete values x̄si

h(x̄) =
Ns∑
i=1

ωiΦ(||x̄− x̄si ||) + Π(x̄) (11)

where the function Φ is a fixed basis function which is radial respect to the Euclidean
distance and Π is a low degree d-variate polynomial. The coefficients ωi are calculated by
requiring exact recovery of the original function over the centers

hsi ≡ h(x̄si ) ∀i = 1, . . . , Ns (12)

If the polynomial term is included, the system must be completed by the additional
zero condition

Ns∑
i=1

ωiq(x̄
s
i ) = 0 (13)
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for all polynomials with a degree deg(q) ≤ deg(Π).
By imposing conditions (12) and (13) in (11) the following linear system is obtained

U s = Cssω (14)

where Css is the interpolation matrix.
Then, the displacement of evaluation nodes is given by the following expression

haj = h(x̄aj ) =
Ns∑
i=1

ωiΦ(||x̄aj − x̄si ||) + Π(x̄aj ) ∀j = 1, . . . , Na (15)

or, using matrix notation

U a = Aasω (16)

From a computational point of view, the interpolation evaluation can be made following
two different approaches: (a) Calculation of the coupling matrix G = AasC

−1
ss and (b)

Solving the linear system given by (14) and computing system (16). Because of the nature
of the problem a one order polynomial has been used and the volume spline as radial basis
function

Φ(||x̄||) = ||x̄|| (17)

which leads to very good results when it is applied to global problems [5].

4 TEST CASE

The test case selected is the DLR F6 wing body configuration, extracted from the 2nd

AIAA CFD Drag Prediction Workshop [6], and is shown in figure 2. To illustrate the
capabilities to adapt the surface grid with both approaches, the upper side of the wing
is deformed at the intersection, while the fuselage remains fixed. The whole surface grid
is composed of 56.322 vertices, and 112.644 triangle elements. The wing is defined by
seven NURBS patches and the central fuselage is defined by one NURBS. The patch that
represents the upper side of the wing section that intersects with the fuselage is modified
by an arbitrary bump deformation.

Cy = a
Cx − C0

x

C1
x − C0

x

(18)

where C1 and C0 are the control points at the leading and trailing edge respectively. That
parameter a is adjusted so the maximum deformation approximately doubles the original
distance to the chord.

Grid adaptation is applied to both fuselage and wing surfaces, although the deformation
is more severe at the fuselage and requires more extensive rearrange, while the wing surface
grid is slightly deformed. So, for illustration purposes, only the fuselage grid is shown.
The baseline configuration is shown in figure 3.
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Figure 2: F6 wing-body computational grid.
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Figure 3: Detail of the wing-body grid, before the deformation.

Figure 4: Surface mesh adaptation using NURBS.
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Figure 5: Surface grid in parametric coordinates of the fuselage, where the baseline configuration is
shown (left) and the adaptation (right).

Figure 6: Surface mesh adaptation using Radial Basis Functions.

5 CONCLUSIONS AND FURTHER WORK

The ability to adapt the computational grid upon deformations of the geometry is a
very useful technique that avoids the need of remesh, which is also suitable for automatic
design tools. Two approaches have been tested: based on NURBS and Radial Basis
Functions interpolation. Both methods provide suitable computational grids, where the
shape of the elements are well preserve.

The strong point of the NURBS is that preserves the original CAD geometry and it is
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not computationally expensive. On the downside, is that deformations have to be applied
to the CAD definition and requires the parametric coordinates of the surface vertex.
Additionally, it is not clear how to propagate the surface deformation through different
NURBS patches.

On the other hand, Radial Basis Functions interpolation provides the ability to adapt
directly the computational grid, without any knowledge of the original CAD file. On the
downside, its main disadvantage is that it may deform other components; in this example,
the fuselage was slightly deformed from its original geometry.
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