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Abstract. In structured grids on irregular regions, when the scheme coefficients are se-
lected in order to satisfy an optimality condition given by the definition of consistency, the
finite difference method is an intuitive and competitive option for the numerical solution
of Poisson-like equations subject to Dirichlet boundary conditions. In this paper, we show
the application of this finite difference scheme to unstructured grids which can be used
as an alternative to linear finite elements on triangles.

1 INTRODUCTION

In this paper, we show the variational finite difference scheme for the numerical solu-
tion of Poisson-like problems using unstructured grids on irregular planar domains with
Dirichlet boundary conditions. Finite difference schemes can be generalized by consider-
ing a finite set of nodes p0, p1, ..., pq, for which it is required to find coefficients Γ0,Γ1, ...,Γq

such that

∂mu(p0)

∂xl∂ym−l
≈

q∑
i=0

Γiu(pi). (1)

In spite of the fact that the basic idea behind the equation (1) is quite simple, there
are few efficient schemes for such kind of regions (See, for instance, Castillo et al [7, 8],
Shashkov [11], and Tinoco et al [1]).
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In this paper, we use a variational finite difference scheme which can derived as follows:
let A,B,C,D and E be smooth functions of two variables. In order to approximate the
second order linear operator in the left hand side of

Auxx +Buxy + Cuyy +Dux + Euy + Fu = f (2)

at the grid point p0 by means of the difference scheme

L0(p0) ≡
∑
i

Γi(p0, pi)u(pi),

we impose the consistency condition given by [10]

[Auxx +Buxy + Cuyy +Dux + Euy]p0 − L0(p0)→ 0

when p1, ...pq → p0, which implies that the local truncation error tends to zero.
At every inner grid point node p0 = (x0, y0), let us consider its q neighbors p1, p2, · · · , pq

with cartesian coordinates pi = (xi, yi). The coefficients Γi(p0, pi) in L0(p0) required to
approximate the derivatives at the left hand side of (2) up to second order accuracy satisfy
the linear system


1 1 ... 1
0 ∆x1 ... ∆xq
0 ∆y1 ... ∆yq
0 (∆x1)

2 ... (∆xq)
2

0 ∆x1∆y1 ... ∆xq∆yq
0 (∆y1)

2 ... (∆yq)
2





Γ0(p0, p0)
Γ1(p0, p1)
Γ2(p0, p2)
.
.
.
Γq(p0, pq)


=


F (p0)
D(p0)
E(p0)

2A(p0)
B(p0)

2C(p0)

 , (3)

where ∆xi = xi − x0, ∆yi = yi − y0.

Hereinafter, for the sake of brevity, Γ(p0, pi) will be denoted simply as Γi.

One must note that, in general, system (3) is underdetermined. Thus, in order to
calculate the coefficients Γ0,Γ1, ...,Γq at the inner grid points, several alternatives can
be considered. For instance, the third order residuals can also be included and the local
optimization problem

min z = R2
6 +R2

7 +R2
8 +R2

9,
subject to

Rk = 0, k = 0, ..., 5.

solved, where
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R0 =
∑q

i=0 Γi − F, R3 =
∑q

i=1 Γi(∆xi)
2 − 2A,

R1 =
∑q

i=1 Γi(∆xi)−D, R4 =
∑q

i=1 Γi(∆xi)(∆yi)−B,
R2 =

∑q
i=1 Γi(∆yi)− E, R5 =

∑q
i=1 Γi(∆yi)

2 − 2C,

R6 =
∑q

i=1 Γi(∆xi)
3

R7 =
∑q

i=1 Γi(∆xi)
2(∆yi)

R8 =
∑q

i=1 Γi(∆xi)(∆yi)
2

R9 =
∑q

i=1 Γi(∆yi)
3.

(See [3, 4]).

This problem must be solved at every inner grid node to produce the optimal local
approximation to the left hand side of (2). Another approach was given in [12], where we
proposed an efficient heuristic scheme based on an unconstrained optimization problem
which is closely related to the constrained one. First, we separate the first equation of
the matrix system (3)

q∑
i=1

Γi − F = 0 (4)

and then we solve the least squares problem defined by


∆x1 ... ∆xq
∆y1 ... ∆yq

(∆x1)
2 ... (∆xq)

2

∆x1∆y1 ... ∆xq∆yq
(∆y1)

2 ... (∆yq)
2




Γ1

Γ2

.

.

.
Γq

 =


D(p0)
E(p0)
2A(p0)
B(p0)
2C(p0)

 . (5)

through the Cholesky factorization of its normal equations

MTM Γ = MTβ, (6)

where

M =


∆x1 ... ∆xq
∆y1 ... ∆yq

(∆x1)
2 ... (∆xq)

2

∆x1∆y1 ... ∆xq∆yq
(∆y1)

2 ... (∆yq)
2

 Γ =


Γ1

Γ2

.

.

.
Γq

 , β =


D(p0)
E(p0)
2A(p0)
B(p0)
2C(p0)

 .
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Figure 1: Regions ENG and HAB.

Next, Γ0 is obtained from (4).

In summary, to calculate the approximation to the solution of equation (2), the follo-
wing algorithm is applied:

1. The boundary of Ω is approximated by a polygonal Jordan curve.

2. A grid G for Ω is generated.

3. L is discretized using G; i.e., is replaced by a linear combination of the values of u
at the inner grid nodes in G as described above.

4. The algebraic system is solved using a suitable method: Gauss-Seidel, SOR, Sparse
Gaussian Elimination.

2 NUMERICAL TESTS

For the numerical tests, we have selected 6 polygonal regions, most of them approxima-
tions to actual geographical locations: will be denoted as ENG, HAB, MEX, MIC, SWA
and UCH (Figures 1, 2, 3), allof them scaled and shifted in order to lie inside [0, 1]× [0, 1].
For these regions, Delaunay triangulations were generated using an adaptation of DistMesh
[17]. The resulting on structured grids were used to calculate the Γi coefficients applying
the heuristic scheme as described in the previous section and then the equation −∇2u = f
was solved numerically.

In all cases, the algebraic systems for finite differences obtained frox m (2) were as-
sembled and solved by Sparse Gaussian elimination. Function u was selected as (See
[11])

u = 2 exp(2x+ y),

and f inside the domain was chosen in such a way that u was the exact solution. The
boundary conditions were selected accordingly.
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Figure 2: Regions MEX and MIC.

Figure 3: Regions SWA and UCH.

To compare the accuracy of the calculated solutions, linear finite elements φi(x, y) =
ai + bix+ ciy on the ith triangular elements were used [18]. The ‖ · ‖2 error norm for the
tests is summarized in table (1). It was calculated as the grid function

‖u− U‖2 =

√∑
i

(ui − Ui)2Ai ,

where u and U are the exact and the approximated solution calculated at the ith-element
respectively, and Ai is the area of the triangular element.
In table (1), N stands for the number of triangular elements in the grid, FE is the
quadratic error for the finite element approximation, and FD is the corresponding for
finite differences; MFE and MFD are the maximum errors for the finite elements and
finite differences, respectively. We also present in figures (4), (5), (6) and (7), the sketch
of the calculated solution for the regions ENG, HAB, MIC and UCH.

From the numerical results that the proposed approach using finite differences on the
unstructured grids for the selected test regions produces satisfactory results.

3 CONCLUSIONS AND FUTURE WORK

In this paper, we considered a general difference scheme which produces satisfactory
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Table 1: Quadratic errors.

Region N FD FE MFD MFE

eng21s 276 1.1476×10−04 1.7351×10−03 1.8296×10−3 4.6956×10−2

eng41s 999 1.3214×10−05 1.4789×10−04 3.5972×10−4 2.0269×10−2

eng81s 3763 2.4046×10−06 6.9386×10−04 1.0980×10−4 5.3931×10−2

hab21s 384 1.9895×10−04 2.1748×10−03 2.1109×10−3 2.2651×10−2

hab41s 1382 3.5269×10−05 4.9405×10−04 4.8706×10−4 9.3081×10−3

hab81s 5326 2.2400×10−04 1.1263×10−04 2.6384×10−2 2.5096×10−3

mex21s 183 1.2667×10−04 9.3252×10−04 7.9489×10−4 1.2292×10−2

mex41s 571 3.6579×10−05 3.1195×10−04 4.9381×10−4 4.4307×10−3

mex81s 2013 8.6614×10−06 9.2237×10−05 2.9020×10−4 1.6004×10−3

mic21s 428 6.2461×10−05 4.1359×10−04 1.7779×10−3 8.8014×10−3

mic41s 1560 1.1604×10−05 1.0389×10−04 5.2738×10−4 2.0318×10−3

mic81s 5961 2.2333×10−06 2.5900×10−05 2.1352×10−4 1.0621×10−3

swa21s 415 7.2817×10−04 1.7317×10−03 1.6404×10−2 2.1067×10−2

swa41s 1491 8.7149×10−05 5.5218×10−04 6.7184×10−4 1.1256×10−2

swa81s 5689 1.9908×10−05 8.2795×10−05 6.4480×10−5 9.2299×10−4

uch21s 341 1.5511×10−04 2.1848×10−03 1.4383×10−3 2.6050×10−2

uch41s 1187 3.6082×10−05 3.1879×10−04 6.0554×10−4 4.7423×10−3

uch81s 4536 1.4963×10−05 1.2540×10−04 9.6960×10−4 3.2938×10−3

results on triangulations, and suggests that the use of suitable finite differences can in-
deed be considered as a reliable alternative for producing reasonable approximations in a
simple way.

Our current research deals with solving time-dependent partial differential equations
using the proposed scheme and a robust software implementation, as well as with some
theoretical considerations regarding (4). The corresponding results will be reported in a
future paper.
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Figure 4: Solutions for ENG
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Figure 5: Solutions for HAB
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Figure 6: Solutions for MIC
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Figure 7: Solutions for UCH
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