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Abstract. Work rolls in hot rolling mills are usually subjected to cyclic thermal loadings,
induced by strip heating followed by water jet cooling. This work aims to present a simplified
method for assessing transient temperature and thermal stress distribution in work roll of hot
rolling mill. A nonlinear elasto-plastic stress analysis is performed. In the approach, based on
the finite elements (FE) method, only the work roll (without the strip) is considered with a
two-dimensional model. Because the length of the roll, a plane strain state is assumed. The
work roll is considered an axisymmetric structure loaded by non-axisymmetric thermal loads,
which can be solved by a semi-analytical approach using a harmonic model and Fourier series
expansion. The two-dimensional problem is then reduced to a one-dimensional model, with a
significant decrease in overall computational time. A comparison of the results obtained by
the proposed semi-analytical approach with those obtained by a two-dimensional FE model is
presented.

1 INTRODUCTION
Work rolls in hot rolling mills are exposed to cyclic thermal and mechanical stresses.

Thermal stresses are caused by a non-uniform temperature distribution, due to strip heating
and water cooling, while mechanical stresses are produced by rolling pressures and contact
actions with back-up rolls. In hot strip rolling, thermal stresses are usually comparable or even
larger than mechanical stresses [1,2,3]. Thermal fatigue caused by cyclic thermal stresses, as
well as other damage mechanisms (mechanical fatigue, wear, oxidation), induce a progressive
surface deterioration in work rolls, which requires periodic replacing and dressing.

In order to estimate work roll surface deterioration and to conformingly schedule periodic
maintenance operations, it is then required to evaluate the magnitude of thermal stresses. The
analysis is generally very complex, so that analytical approaches are really impractical or
even impossible. Conversely, numerical approaches based on the finite element (FE) method
are very promising. Different modeling strategies, of different complexities, have been
proposed in literature. Some of them model strip plastic deformation and strip/work roll
mechanical interaction; computational resources and time then become extremely high and
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often unsuitable for current industrial needs [4,5]. An alternative simplified approach, instead,
has been recently proposed, in the attempt to reduce the overall computational burden, while
still providing accurate results. The approach is based on a plane (two-dimensional) model of
only work roll, under rotating thermal loading [6,7]. A transient thermal and mechanical
analysis was performed to estimate thermal stresses. Unexpectedly, this approach still
required too high simulation times, especially for nonlinear mechanical analysis. This
motivates the aim of the present work to develop a semi-analytical FE approach, which can
significantly decrease the total simulation time compared to the above plane FE approach.
Semi-analytical methods have been developed more than 50 years ago for FE analysis of
axisymmetric structures loaded non-axisymmetrically [8]. Therefore, they can be effectively
used to study a work roll in hot rolling mill, as it is an axisymmetric structure loaded by non-
axisymmetric thermal loading (heating flux and convective cooling). Generally, such methods
allow a three-dimensional (3D) model to be reduced to a plane (2D) model and the solution
obtained as superposition of results of every component analysis, thus providing a significant
reduction in computational time. For the specific application, the simplified plane model of
work roll can be further analyzed by a one-dimensional (1D) FE analysis.

In the present work, a semi-analytical finite element approach is proposed  in order to solve
two problems: (1) transient thermal analysis of axisymmetric bodies under different types of
non axis-symmetric thermal loads (temperatures, fluxes, convection) and (2) nonlinear elasto-
plastic stress analysis. An 1D finite element model is developed for both thermal and
structural problem. An efficient algorithm for fast and accurate time integration is also
developed to solve thermal transient problems. An illustrative numerical example is finally
discussed, to test the performance of the proposed semi-analytical FE approach. The example
refers to an infinitely-long cylinder under rotating thermal loadings, which has been used as a
simplified model of work roll in hot rolling mill. Results are compared with those given by a
plane FE model. The proposed semi-analytical approach is shown to provide similar results,
with a strong reduction in computational times compared to plane FE model.

2 SEMI-ANALYICAL APPROACH
A three-dimensional structure or solid is defined as "axially symmetric" or "axisymmetric"

if its geometry, material properties and boundary conditions are independent of an azimuth
coordinate θ of a cylindrical reference frame (r, θ, z), where z coincides with the component
axis of symmetry and r is the radial distance from z-axis. Depending on the nature of external
loads, two different situations can be identified. In the first, also the external loads are
themselves axisymmetric with respect to same z-axis. In this case, the analysis is
mathematically two-dimensional; the results are independent of θ and they are only function
of r, z coordinates [9]. Examples are disks rotating at uniform speed under centrifugal forces,
or cylindrical pressure vessels under internal pressure.

A second type of problem, of more practical interest, is when the structure is axially
symmetric but the loading is not, so that the analysis is really three-dimensional. A great
simplification can be achieved by using a so-called semi-analytical approach, based on a
Fourier series method. The given loading is expanded in Fourier series, as a function of
azimuth angle θ, and then replaced by the sum of several component loading (harmonics). For
example in the case of the thermal analysis the boundary applied temperature becomes:
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where cosine and sine terms are, respectively, the axisymmetric and anti-axisymmetric loads.
All barred quantities in Eq. (1) are amplitudes, which in a three-dimensional analysis, are
functions of r, z and n but not of θ. The series is truncated to a finite number N of terms. A
similar series is obtained for the known applied fluxes or convection. An analysis is then
performed for each load component. In linearity, theory shows that the FE analysis becomes
uncoupled due to the particular topology of stiffness matrix. According to the principle of
superposition, the sought solution is obtained by adding the solutions of each load component.
As an example the nodal solution for the node i can be written in Fourier series as well:
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where here symbol u indicates the temperature. As above, all barred quantities are amplitudes.
In the case of structural analysis, in cylindrical coordinates, the load is:
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to which nodal temperatures found during the previous thermal analysis, now considered as
input data, has to be added. The unknown displacements in cylindrical coordinates become:
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In the FE harmonic model, only a limited number of terms of Fourier series is considered,
each of them leading to an algebraic linear system. The original three-dimensional problem is
then replaced by a series of two-dimensional analyses, which are solved much more quickly
than the original 3D problem. Furthermore, semi-analytical approach is even more suitable to
solve a plane problem (as that discussed later on in the paper), as it reduces the 2D problem to
a 1D one. A problem with thousands of degrees of freedom is then replaced with one having
only tens.

3 2D STATIONARY ANALYSIS
In a thermal analysis the only degree of freedom per node is temperature. In a theoretical

study, different types of harmonic finite elements have been formulated for a plane thermal
analysis: two-node elements (with one or two Gauss points) having linear shape functions,
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three-node elements (with two or four Gauss points) having quadratic shape functions [10,11].
An example is shown in Figure 1a: the mesh of a plane axial symmetric solid of revolution is
one-dimensional and consists of adjacent elements located along the radius of the solid, see
Figure 1b.

Figure 1: Three-node element with two Gauss points (a); Mesh (each dot point is a node) (b)

Due to orthogonality property of trigonometric terms of Fourier series, the element

stiffness matrix is a block diagonal matrix:            
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elementary stiffness matrix for i-th term of Fourier series and N is the number of harmonics.
Explicit expressions for shape functions and "stiffness matrix" have been derived for each
element type mentioned above [11,12]. As an example, for a two-node linear finite element it
is:
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in which [D] is a diagonal matrix with the material conductivity, [Bn] is the “strain” - nodal
temperature matrix for the n -th harmonic of Fourier series.

Different types of imposed boundary conditions (temperature, flux and convection) were
also studied in detail. In FE model, an imposed temperature is treated as an imposed nodal
displacement in a structural analysis. Similarly, a thermal flux applied on boundary elements
is converted into equivalent nodal loads. Instead, special attention has been deserved to some
particular boundary conditions. For example, the application of different temperatures on
different angular sectors on the boundary poses particular numerical problems, due to one-
dimensional nature of harmonic model. Three methods have been proposed [11,12]: two of
them (fictitious thermal flux, imposed temperature) are based on Fourier series expansion of
the imposed temperature, the third is based on Lagrange multipliers. Illustrative examples
showed that the performance of all three methods is actually comparable, although the third
method is more flexible to represent various boundary conditions. For convection heat
exchange, instead, see the final part of next Section.

For structural analysis the scheme is the same, although the matrices have more
complicated form due to larger number of DOFs per node: two displacements in 2D analysis
instead of only one. For the two-node linear finite element, for the n-th harmonic of Fourier
series, the following expressions for [B] matrices were obtained:
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starting from 2D displacement expression:

   
   

























1
0

1
0

cossin

sincos

n
ininii

n
ininii

nvnvvv

nunuuu




(7)

Stiffness matrices become:
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The interpolation function for the two-node finite element is (also valid for thermal problem):
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being r1 and r2 the nodal coordinates.
Theoretically, it is expected that increasing the node number would improve the overall

numerical accuracy of results, at the expense of higher computational cost. However,
systematic tests revealed how the best performance is given by the three-node element with
two Gauss points (see Figure 1a), which has then been used in all subsequent simulations.
Another important parameter is the number of harmonics, which should be chosen as the best
balance between accuracy and simulation time. Higher harmonic number N are expected to
give better precision in Fourier expansion of applied loads. It has been noted that simulation
time increases roughly linearly with N harnonic number.

In the present work only the thermal stresses were analysed and therefore the boundary
conditions have only to prevent the rigid body motion. This means that the boundary
conditions are imposed to only two nodes.
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4 2D THERMAL TRANSIENT ANALYSIS
In numerical methods, the time domain is represented by a discrete sequence of time

instants, with the time step Δt, at which the solution is calculated. The partial differential
equation governing a transient thermal analysis can be solved by a finite difference method,
implemented as an explicit or implicit numerical algorithm: explicit methods calculate the
state of the system at a later time only considering the state of the system at current time,
while implicit methods calculate the state of a system at a later time by solving an equation
involving both the current state of the system and the later one. Implicit methods are usually
slower (although more accurate) than explicit methods on single time step computation, as
they require solving a linear system at each time step.

In the present study, time integration has been performed by two different methods. The
first is Forward Finite Difference (FFD) method, which is an explicit method proven to be
very quick and effective. However, it is said to be "conditionally stable", as it requires the
time step Δt be smaller than a critical value to get a stable solution. This can represent a
serious disadvantage, as the need of stable solution may impose relatively small time step,
which results in a quite large total simulation time. The fundamental equation for FFD
algorithm is:

            FtSKtSMMS iii  
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where {S}i and {S}i+1 are the vectors of nodal solutions calculated at consecutive time steps i
and i+1, respectively; symbol [K] is the "stiffness" matrix, [M] is the "mass matrix", {F} is
the vector of applied external "forces" and Δt is the time step used. Note that the mass matrix
is time-independent, thus it can be inverted only once, with a considerable time saving.
Explicit formulae of "mass matrix"  have been derived for each element type introduced in
Section 2.1 [11,12].

An alternative method has been developed for time integration. In analogy with the linear
acceleration method [11], the proposed approach assumes a linear variation of first derivative,
thus it has been called Linear Speed Method (LSM). Unlike FFD algorithm, this method is
implicit and also "unconditionally stable". The fundamental equation of LSM method is:
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in which  iS and   1iS are the vectors of the derivatives of nodal solutions calculated at
consecutive time steps i and i+1. Note that to further improve the computational speed, the
system in Eq. (10) has been solved by LU factorization.

Several benchmark tests have been performed, to compare the relative performance and
accuracy of FFD and LSM methods [11,12]. Both algorithms have been shown to provide
almost coincident results, with a time saving for LSM of about 4% compared to FFD and
even 99% with respect to a plane FE model. The use of LU factorization in LSM algorithm
further reduced the computation time of about one third. The above tests then revealed that
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the fastest algorithm for transient thermal analysis is LSM method with LU factorization; this
algorithm will be used in the following illustrative example.

The algorithms for transient analysis can also be used to solve the non-trivial problem of
applied convective boundary condition. Three different methods, with various approximation
levels, have been devised: one based on an average temperature, one based on a step-wise
convective flux, the third based on fundamental trigonometric formulae (which has been
implemented by two different algorithms: temperature calculated either at previous or at
current time step) [11,12]. Without going into the details, it suffices to say that a comparative
study showed how the approach based on trigonometric functions provides the highest
accuracy and lowest simulation time [11,12].

5 ELASTO-PLASTIC STRUCTURAL ANALYSIS
The algorithm employed for elasto-plastic stress analysis is generally described in [14].

The plastic zone developed in the work roll has a very small thickness and occurs in the
vicinity of surface roll. That is why a simplified elasto-plastic approach was utilized which
allows only to slightly couple the different harmonics only for the few finite elements
reaching the plastic regime. Thus the stiffness matrix becomes a little bit “less sparse” and the
computer time increases insignificantly. A bilinear hardening characteristic of the material
and a small tangent hardening modulus were adopted.

The well-known flow rule is:

   




Fdd pl (11)

were  pld is the increment of plastic strain,   are the total stresses and F is the yield
criterion, von Mises in this work:

           026, 2*
0

2222   xyxzzyyxF (12)

Hardening parameter (the effective plastic strain ) has the expression:

  plplpl  d (13)

where

        2pl2pl2pl2pl
pl 2

3
2

xyzyx dddddd   (14)

At each iteration the current yield stress is updated according to the bilinear hardening
characteristic and to the current value of the effective plastic strain in expression (13).

6 SIMULATION RESULTS AND DISCUSSION

6.1 Numerical example
An application which would highlight the efficiency of the semi-analytical approach

introduced above is represented by the analysis of the transient temperature and stress
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distribution in work roll of hot rolling mill. Work roll is an axially symmetric structure,
subjected to non-axisymmetric thermal loadings (thermal flux, convective cooling). In this
numerical example, the performance of semi-analytical approach is compared to that of a plane
FE model, which has been adopted for a simplified thermal stress analysis of work roll [10,12].

The thermal load configuration used for numerical simulations is shown in Figure 2a: an
infinitely-long cylinder, rotating at constant angular speed and subjected to constant input heat
flux and convective cooling. This configuration has been assumed as a simplified model of
work roll under cyclic thermal loadings characteristic of hot strip rolling: the constant input
flux q0 approximates strip heating, while convective cooling is a simplified model for water
cooling. Simulation parameters, assumed for simplicity as temperature invariant, are
summarized in Table 1.

Table 1: Several geometrical and thermal parameters used in simulations

PARAMETER DESCRIPTION PARAMETER DESCRIPTION

R=300 mm Cylinder radius q0=13,7×106

W/m2
Input thermal flux

=2,953 rad/sec Cylinder angular speed h=10100
W/m2K

Convection
coefficient

 = 10° Heating sector T0=20°C Bulk temperature of
cooling medium

α = 45° Angular gap between
heating and cooling Troll=20°C Initial work roll

temperature
 = 90° Cooling sector

The numerical analysis simulates a physical time transient of 3600 seconds, which
corresponds to about 1690 roll revolutions. At the initial simulation time, work roll is
assumed at a constant uniform temperature Troll=20°C. A thermal analysis is first performed,
followed by a mechanical analysis, in which the temperature time history previously
calculated is applied as input thermal load, to finally determine stress and strains. For the sake
of comparison, both FE models (plane and harmonic) used the same mesh density in both
thermal and mechanical analysis.

Figure 2b shows the plane FE model of work roll: an axis-symmetric mapped mesh, with
6940 elements and 6921 nodes. A mesh refinement is imposed near the surface, along the
tangential and radial directions, to capture the thermal gradient here expected. Small elements
are located for a depth of 10% of work roll radius, with even smaller elements placed
immediately underneath the surface, for a depth of 2% of radius. Each surface element covers
a 1° angular sector, with a total amount of 360 elements on the boundary.

In transient analysis, work roll rotation has been simulated by considering the roll fixed and
by applying rotating thermal loadings which are moved a step forward at each next time instant
(for the assigned mesh, a work roll rotation is completed after exactly 360 load steps).

In Ansys, the thermal analysis employed four-node linear thermal elements. Numerical
solution used an implicit solver based on Jacoby Conjugate Gradient (JCG). The simulation
required about 609'000 load steps, which were solved (as an order of magnitude) in about 3
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days of simulation. It is worth mentioning how results of thermal analysis have been validated
(see [10]) by an analytical solution for the stationary temperature distribution [15]. Mechanical
analysis used four-node isoparametric elements under plain strain condition. An elastic-plastic
material with von Mises plasticity and kinematic hardening rule has been adopted. Nonlinear
numerical analysis was solved by an explicit solver code, with modified Newton-Raphson
algorithm. Compared to thermal simulation, mechanical analysis required a much larger
simulation time, more than an order of magnitude longer than thermal simulations. To keep the
simulation time within reasonable limits, only 20 rotations were simulated, for a total running
time of approximately 10 days of simulation. Further details on model and simulation
parameters can be found in [6,7].

(a) (b)

Figure 2: Thermal configuration analyzed (from [15]) (a); finite element model (global and zoom) (b)

In semi-analytical approach, the 2D geometry of work roll in Figure 2a is represented by a
1D model. A three nodes element with two Gauss points is used, see Figure 1a; the mesh,
shown in Figure 1b, has a total amount of 28 elements and 57 nodes. For an effective
comparison, the 1D and 2D models have an identical element distribution in radial direction,
compare Figure 1b with 2b.

As discussed above, an important modeling parameter which has to be defined in the
harmonic model is the number of harmonics N. The number of harmonics is a critical
parameter, since it controls both total simulation time and accuracy of results. The thermal
configuration in Figure 2a is characterized by a constant flux applied on roll boundary over a
relatively small angular sector ( = 10°). When expanding in Fourier series a periodic step
function (as the thermal flux applied on work roll boundary), the approximation error tends to
increase as the step width decreases, because of Gibbs' phenomenon at jump discontinuity. In
the analyzed geometry, the thermal flux extends only over a 10° angular sector, which would
then require an appropriate high number of harmonics to minimize the approximation error.
Some benchmark tests were performed [11,12] to identify the optimal number of harmonics for
the configuration here analyzed. A comparison of the maximum transient temperature,
calculated by the plane model and various harmonic models with different number of harmonics
revealed that N=50...100 would be an optimal compromise between accuracy and computing time.

For both, the plane FE and harmonic approaches, the work roll was considered fixed while
thermal loading rotates.
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6.2 Thermal analysis
A qualitative comparison of results between plane and harmonic FE model is given in

Figure 3, which shows, as an example, the temperature field in work roll after 1800 seconds.
The map of temperature at other time instants (not included here) would show a progressive
heating of the entire work roll, although the largest temperature gradients develop very close
to the surface (this justifies the use there of very small elements in the mesh). Within the roll
there is a progressive temperature increase up to 180°C, while at surface the maximum
temperature reaches 388°C within the bite region. The temperature field calculated by semi-
analytical FE model is very similar to that given by plane FE model, although they do not
seem exactly coincident, the difference being ascribed to the slightly different color map
adopted.

Figure 3: Temperature distribution in work roll after 1800 sec. (a) plane and (b) harmonic FE model

Figure 4, instead, compares the temperature time history within a 60-sec time interval, for
a point located on work roll surface. Each peak temperature occurs when the monitored point
enters the heating zone, thus the series of equally-spaced peaks identifies the sequence of
work roll rotations. The transient nature of thermal phenomenon here investigated is clearly
confirmed by the continuous increase of peak temperature during consecutive rotations. The
diagrams show a very similar trend, both for the overall temperature history and the maximum
temperature reached during every rotation. Only small differences may be captured, which
may be attributed to the different rate of results saving on computer hard disk.

Figure 4: Temperature history for a point on work roll surface: (a) plane and (b) harmonic FE model

Figure 5 shows the variation of the temperature along the radial direction, in different
instants. The results of plane model are compared to those obtained in [15] under steady-state

(a) 600 secondi; (b) 1800 secondi; (c) 3600 secondi(a) 600 secondi; (b) 1800 secondi; (c) 3600 secondi
(a) 600 secondi; (b) 1800 secondi; (c) 3600 secondi(a) 600 secondi; (b) 1800 secondi; (c) 3600 secondi
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condition. A very high temperature gradient in the vicinity of the roll surface is noticed.
A comparison between plane and harmonic models is presented in Figure 6, which refers

to the radial temperature distribution at different time instants at the neighboring of the roll
surface. A very similar trend is observed for both FE models, although temperatures tend to
be slightly lower for harmonic model. The continuous temperature increases with time,
especially inside the work roll, is indicated by the different curves. Both diagrams also
confirm that work roll remains at a rough uniform temperature, except for a very small
portion very close to the surface (wide about 1% of roll radius), where a steep temperature
gradient is observed (note that diagrams only plot radial coordinates close to roll surface). The
very localized nature of temperature variation within this narrow region (usually called
"thermal boundary layer" in technical literature) requests the use of an appropriate mesh
refinement close to work roll surface that is very useful also in the structural analysis.

Figure 5: Radial temperature at different time instants: plane model

Figure 7, instead, describes the time-evolution of temperature for points at different radial
depths, along a fixed angular position. The figure further emphasizes that the thermal gradient
is confined in a small region close to the boundary. In fact, on work roll surface the
temperature ranges of about 200°C, while at 1 mm depth from surface the variation is only
100 °C, and even negligible at 6 mm below surface. In addition, the detail in the same figure
highlights a sort of "thermal inversion" phenomenon induced by forced convection cooling, in
which the work roll material on the surface is at a lower temperature than material inside.

For what concerns the comparison of computing time, the simulations confirmed how the
performance of harmonic model gives a strong reduction of running time, compared to plane
FE simulations. As a rough estimate, the harmonic model requires about 60 minutes to
complete the 3600 seconds of work roll simulation, while the plane model needs about 10
hours. Obviously, such a comparison is only indicative, since computation times greatly
depend on the specific computer layout and performance.
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Figure 6: Radial temperature at different time instants: (a) plane and (b) harmonic FE model

Figure 7: Temperature time history for points at different radial depths, along the same angular position. (a) plane
and (b) harmonic FE model

6.3 Mechanical analysis
The temperature distribution calculated in thermal analysis is used as input load in the next

mechanical analysis to compute thermal stresses. In present study an elastic-ideal plastic steel
was considered (the yield stress was σy=500 MPa). As an example, Figure 8 shows the
distribution of von Mises stress in work roll calculated by both plane and harmonic FE model.
Results refer to the stress calculated by a nonlinear transient analysis, resulting from the
temperature distribution after 20 rotations (time instant 43 sec). The maximum von Mises
stress is limited to approximately 542 MPa, slightly higher than σy=500 MPa due to the
tangent hardening modulus.

Figure 8: Von Mises stress (global and zoom view on heating zone): (a) plane and (b) harmonic FE model
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Note that, because of plasticity, the mechanical analysis would become nonlinear and an
iterative convergence algorithm should be performed at each time step. However tacking into
account the highly localized plastic zone, a simplified approach was used and in this case the
different linear systems, corresponding to different harmonics, become slightly coupled and
therefore the computer time would not increase significantly.

7 CONCLUSIONS
The present work proposes a semi-analytical approach for the transient thermal analysis

and stress analysis of axisymmetric structures under non axis-symmetric loads. A typical
example is represented by work rolls in hot rolling mills, which are exposed to hot strip
heating and water cooling on different parts of their. The work roll revolution induces cyclic
heating and cooling phases on the surface, responsible of cyclic tensile and compressive
stresses. Such cyclic stress may cause surface cracks to appear and propagate, hence
demanding for periodic work roll replacement and dressing.

The FE theory on semi-analytical approach for stationary and transient thermal analysis
and for stress analysis of axi-symmetric bodies under non axis-symmetric thermal loads is
briefly reviewed and discussed. Different aspects of FE numerical simulations are discussed,
as element type, modeling of boundary condition, numerical algorithms for transient analysis.
The present paper only illustrates the main advantages or disadvantages of different methods,
while all the theoretical details are discussed in detail elsewhere (the interested reader can
refer to [11,12]). A numerical example is finally presented to test the performance of the
proposed semi-analytical approach and compared to a plane FE model. The example refers to
a rotating cylinder under imposed input flux and convective cooling, which has been used as a
simplified model to study temperature and stress distribution in the work hot rolling mill
[6,10,11,12].

The transient thermal history in work roll is first simulated, which allows identifying the
transient temperature distribution and the so-called "thermal boundary layer" close to wok roll
surface, where the largest thermal gradients usually occur. The calculated temperature
distribution is applied as input load in subsequent mechanical analysis to calculate thermal
stresses in elasto-plastic range. Semi-analytical approach is shown to provide results in very
good agreement with plane FE simulations.

The example confirms the accuracy of semi-analytical approach, which however gives a
strong reduction of overall simulation time compared to plane FE simulations, as it reduces a
plane model to a 1D one, therefore a problem having thousands of degrees of freedom is
replaced with one having only tens. Plastic zones are very localized in the vicinity of the roll
surface and for this reason the time computer is very short also for stress analysis problem
even if few iterations are performed at each time step.

The obtained numerical results are quite promising and confirm the validity of the
proposed semi-analytical approach. However, an experimental validation of obtained
numerical results would be required, as well as an experimental evaluation of both thermo-
mechanical materials properties and thermal coefficient used in numerical simulations.
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