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Abstract. This paper covers the development of a new stand-alone 3D finite element 

software package called “MSIM”, which allows large deformation calculations as it occurs in 

the field of manufacturing technology. Since existing commercial software packages do need a 

lot of time to solve the highly nonlinear system of equations and do not often incorporate 

suitable elements as it is common in several forming processes, a new calculation program was 

implemented to remedy this deficiency. The first part of this work describes the development 

and the object-oriented implementation of the finite element program MSIM in C++, which is 

highly superior to commercial software packages with respect to calculation time and storage 

capacities. The parallelization of the assembly algorithm and the implementation of the solution 

algorithm for the highly nonlinear system of equations is one of the core issues. The second 

part focuses on the development of a novel solid-shell element and treats the locking 

phenomenon resulting from low order interpolation functions. The customized solid-shell 

element formulation is embedded in a static implicit total Lagrange formulation, which is able 

to deal with large deformations in accordance with the finite strain theory. For the constitutive 

relation, a hyperelastic material law was used in preparation to a further extension to a 

hyperelastic-plastic material behavior. Therefore, the determination of the elastic predictor 

gained from the right Cauchy Green strains, turned out to be a crucial step in hyperelasto-

plasticity. Several benchmark tests were performed to evaluate the computing speed of the new 

calculation program MSIM and the accuracy of these solid-shell elements in comparison to the 

results attained by the FEM-package ANSYS©. The results obtained so far agrees satisfactorily 

by gaining a significantly reduced calculation time. The developed calculation program serves 

as an effective tool to predict the stress-distributions inside the material under large 

deformations. Furthermore, this calculation program provides the basis for further 

improvements and enhancements and thus serves as an effective tool for research and teaching. 
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1 INTRODUCTION 

Simulations in the field of manufacturing technology, which requires to take into account 

large deformations, large kinematic movements (esp. large rotations) and/or contact and 

friction, leads to highly nonlinear system of equations and finally to a time-consuming solving 

procedure. Well known and established commercial finite element software packages like 

ANSYS©, ABAQUS© a.s.o, are very expensive to acquire for small specialized companies. 

These software packages are equipped with plenty of standard finite element formulations, 

which are often not suitable in the presence of large deformations, temperature and/or phase 

transitions as it is common in metal forming processes. Therefore, these software packages 

provide programmable interfaces to establish user defined element formulations or material 

laws (e.g. UMAT-subroutine in ABAQUS©), where the user have the opportunity to implement 

his own program code. Another possibility is to use open-source software packages (e.g. Z88, 

FreeFEM++), but they are often not well documented and may contain undiscovered bugs. 

Therefore, whether commercial software packages or open-source software packages, the user 

have to implement his own program code at special application cases. Another aspect arises 

from the large calculation time caused by the general formulation of the contact search 

algorithm, which can be reduced by using a problem adapted contact algorithm [6, 12]. 

These arguments resulted in the decision to develop a customized calculation software 

prototype. The advantage is clear: no license fees under a high degree of flexibility for special 

application problems. 

2 OBJECTIVES 

The aim of this study is to develop a finite-element calculation program, taking into account: 

- Large deformations as it is present in many metal-forming processes. 

- Flexibility in terms of further element enhancements. 

- Efficiency with regard to a low solving time. 

Based on these arguments the calculation program is built in C++ by using solid-shell 

elements, because these elements take into account the full three dimensional stress-state as 

they are needed in the field of metal forming processes. Many authors gives instructions 

respectively a schematic flowchart to build a finite-element or a multibody calculation program 

e.g. [1, 3, 8, 14], which will serve as a guideline in this work. 

3 SOFTWARE DEVELOPMENT 

The software development has been carried out in an object-oriented way in Microsoft 

Visual Studio C++. The class hierarchy is shown in Figure 1. The base classes CPart and 

CElement provides the basic functionality for all further derived classes. Each new derived part 

or element inherits the main functionality of his base class and allows a simple enhancement of 

new properties. The class CAssembly is used as a container which includes the assembly as 

well as the equation solving algorithm. CExtList and CMatProp contain all the functionality 

and information regarding the boundary conditions and material properties. Large deformation 

problems leads generally to the static-implicit equation system 
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( ) R u P  (1) 

where ( )R u  describes the vector of inner forces and P  describes the Vektor of external 

forces. Equation 1 is solved by the Newton-Raphson procedure. Therefore, the linearized 

equation system 

  K u P  (2) 

with the global tangent stiffness matrix K  is the basis for an iterative solving procedure in 

CAssembly, which will be solved by a parallelized sparse-solver (pardiso-solver) as provided 

by the Intel©-MKL-Library [15, 16]. The sparse-matrix storage scheme is also shown in [15, 

16] and implemented in the class CMatrixSparse. 

 

Figure 1: Class hierarchy in C++ of the calculation program MSIM 

3.1 Parallelization algorithm 

The assembly operation is parallelized to keep the total solving time low and exploit the 

power of multicore processors. For the assembly operation, it is always necessary to use a loop 

over all affected elements and therefore, a linear list is established (see Figure 2). The linear list 

including all elements are split into several sections, whereas each section will be executed by 

one thread. 

*pRoot
Elem. 1 Elem. 2 ...

Thread 1 Thread 2 Thread 3

...
...
...

...

...

...

...

 

Figure 2: Parallelization of the element list 
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Thread 1 begins at the top of the list and assembles all elements in the direction of the start 

point of thread 2. The next section is executed in a similar way by thread 2 and so on. The total 

count of threads will be automatically determined by the calculation software and is depending 

on the size of the element list and the computer being used. This parallelization technique turned 

out to be very efficient and led to a significantly speed-up in calculation time especially at high 

order equation system. 

4 ELEMENT DEVELOPMENT 

In the following paragraph a new solid shell element (denoted by CElementSC8 in Figure 2) 

will be developed by derivation from the base class CElement, which is used to calculate large 

elastic deformations (e.g. rubber, gaskets a.s.o.). Therefore, a hyperelastic material law by an 

underlying isotropic strain energy functional 

ˆ ˆˆ( , ) ( ) ( )W J U J W C C  (3) 

consisting of the volumetric part 

   
2 2

( ) 1 ln
4

U J J J
    
 

 (4) 

and the deviatoric part 

 ˆ
ˆˆ ( ) 3

2
W I


 

C
C  (5) 

defined in the principal strains i , with the relationships 

1 2 3J     
(6) 

2 2 2

ˆ 1 2 3
ˆ ˆ ˆI     

C
 (7) 

1/3ˆ
i iJ   (8) 

will be used [4, 5, 11, 13]. Herein, J  describes the volumetric part of the right Cauchy-

Green strains C  and ˆI
C

 denotes the first invariant of the deviatoric Cauchy-Green strains Ĉ .  

4.1 Discretization of the solid shell element 

Starting point for the solid shell discretization is the weak form 

0 0 0

0 0: dV dV dA   
  

     S E b u t u  (9) 

with  0 u   on  0u    u   

in the Total-Lagrangian form, which includes the 2nd Piola-Kirchhoff stresses S , the Green-

Lagrangian stresses E , the mass density 0  referred to the initial configuration, the volume 

force vector b  and the surface stress vector 0t  acting on the initial configuration. For the 
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discretization of an eight-node solid shell element based on the degenerative concept, linear 

shape functions 

   1 1 2 2 3 30,125 1 1 1K K K

KN                 1...8,K   (10) 

were used (see Figure 3). Similar approaches can be found in [2, 7, 10]. 

X
4

2
3

1

X
1

X
5

X
6

X
2

X
3

X
7X

8

E2

E3

E1

Continuum Discretizised „Solid-Shell“
3

2

1

A1

R

G3

G2

G1

 

Figure 3: Kinematics and discretization of an 8-node solid shell element 

An arbitrary point at the initial (Lagrangian R ) and current (Eulerian r ) configuration is 

expressed by the position vectors 

I

INR X  
(11) 

I

INr x  (12) 

Furthermore, all covariant basis vectors are given by 

i

i





R
G        and        i

i





r
g . (13) 

Now the covariant components of the Green-Lagrangian strains and its variation 

 
1

2
ij i j i jE    g g G G  (14) 

 
1

2
ij i j i jE     g g g g  (15) 

can be determined. 

4.2 ANS method 

The ANS method will be used to avoid the shear and thickness locking phenomena, which 

have a negative effect on the element response especially in bending dominated applications. 

For this purpose, special evaluation points on A, B, C and D for calculating the shear strains 
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23E  and 13E , and E, F, G, H for calculating the thickness strains 33E , are selected and 

subsequently interpolated over the continuum (see Figure 4). 

2
3

1

A

B

C

D

E F

GH

 

Figure 4: Evaluation points of the ANS method 

This leads to the new shear strains: 

   23 1 23 1 230,5 1 0,5 1ANS A BE E E      
(16) 

   13 2 13 2 130,5 1 0,5 1ANS C DE E E      (17) 

33 33 33 33 33

ANS E F G H

E F G HE N E N E N E N E     (18) 

  2211 1125,0with  KK

KN         .,,, HGFEK    

The shear and thickness strains 23

ANSE , 13

ANSE  and 33

ANSE  obtained in this way, substitute the 

strains 23E , 13E  and 33E  in Equation 14. 

The 2nd Piola Kirchhoff stresses are calculated from the constitutive relation in Equation 3 

based on the spectral decomposition 

3

1

i i i

i

S


 S N N . (19) 

The contravariant components 
ijS  can be calculated after some transformations. In 

preparation of a hyperelastic-plastic material law and taking into account the Levi-Mises flow 

rule with an underlying predictor-corrector algorithm, the elastic predictor related to the initial 

configuration leads to 

, 1

1 1

e Trial p

n n n



 C C C . (20) 

The crucial step is that the right Cauchy-Green strains 1nC  has to be calculated from 

Equation 20, which includes all relevant modifications caused by the ANS method. Since 
1p

n


C  

and 1nC  is symmetric, the elastic predictor 
,

1

e Trial

nC  is unsymmetrical. Therefore, a Cholesky 

decomposition with 1 1 1

T

n n n  C L L  is applied, which leads to the equation 
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1 ,

1 1 1 1

T p T e Trial T

n n n n i i n i

i i



   L C L L N L N

A y y

, 
(21) 

by using the lower triangle matrix 1nL . The principal strains 
,e Trial

i  and the directions iN  

can be calculated by using the Jacobi Iteration on A  and further substituted in the strain energy 

function (Equation 3). 

5 ELEMENT TESTS 

In the following the performance of the calculation program MSIM equipped with the solid 

shell element formulation will be demonstrated in contrast to the commercial software package 

ANSYS©. Figure 5 shows a clamped beam for which the element response was tested in the 

static implicit case for elastic material. 

clamped

4x F

Geometry: 1x1x8mm

u

200000E MPa
3,0

 

Figure 5: Deflection of a clamped beam 

For this purpose different meshes were generated in the commercial software package 

ANSYS© and applied to the beam. The vertical tip deflection u  after applying the external 

forces F  (Figure 7) is very close to the ANSYS© solution, confirming the correct response of 

the SC8-ANS solid shell element. Table 1 shows the result and demonstrate a very good 

approximation even for low element numbers involved. 

 

Table 1: Elastic response of the solid shell element 

ANSYS© ANSYS© MSIM (C++) 

3x1x23 elements 

SHELL 181 

u = 1,58 mm 

5x5x40 elements 

SOLID 185 

u = 1,59 mm 

1x1x8 elements 

SC8-ANS 

u = 1,55 

 

Figure 6 shows a supported plate with one edge clamped. 
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ANSYS

MSIM (C++)

F

F

SHELL 181

SC8-ANS

Geometry: 100x1x100 mm

200000E MPa

3,0

1000F N

 

Figure 6: Deflection of a supported plate. 

The corresponding vertical deflection u  in the middle of the plate after applying the external 

force F  is presented in Figure 7 at different load steps. Whereas at load step four, the total 

force is applied. 

 

Figure 7: Deflection of a clamped plate depending on the load step. 

The results show also a very good approximation in opposite to the solution gained from the 

commercial software package ANSYS© by using SHELL 181 elements. The great advantage 

lies in the significantly reduced calculation time of MSIM. MSIM needs 2 seconds which is 

superior to 50 seconds needed by ANSYS©. 

The solid shell element formulation SC8-ANS also turns out to be very robust at large 

deformations as shown in Figure 8. 
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Geometry: 50x3x200 mm 200000E MPa 3,0 500p MPa

MSIM (C++)

SC8-ANS

Encastre

p

p

 

Figure 8: Plate under large torsional load 

By using the same discretization and SHELL 181 elements in ANSYS©, the calculation 

failed after some load steps. 

Beyond this, a lot of tests have been performed to evaluate the element behaviour at different 

load conditions. All of them turned out to be in satisfactory agreement with the ANSYS© 

solutions. 

6 CONCLUSIONS 

The self-developed calculation program MSIM turned out to be very efficient regarding 

calculation time in comparison with the commercial software package ANSYS© and fulfills the 

requirements posed at the beginning of this paper. The object oriented software development 

provides the flexibility to implement further elements and contact formulations. The 

parallelization of the assembly algorithm combined with the parallelized sparse-solver 

“pardiso” turned out to be very efficient. 

Several systematic element tests beyond the tests mentioned above, confirm the robustness 

and convergence in the hyperelastic case and provides the basis for a hyperelasto-plastic 

extension [9]. 
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