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Abstract. Ocean engineering structures are frequently subjected to repeated dynamic loads 

and impact loads. The dynamic strength analysis and shakedown analysis of offshore platform 

structure have an important place in ensuring the safety and reliability of ocean engineering 

structures under impact loads. Therefore the shakedown analysis theory was introduced to the 

ultimate strength analysis of brace strut of semisubmersible drilling platform considering 

wave impact load. According to the kinematic shakedown theorem and combined with the 

finite element calculation and analysis, a theoretical method of upper bound shakedown 

analysis for offshore structures under repeated impact loads was presented and compared with 

existing results to verify the reasonableness. Then by applying the theoretical method to 

shakedown analysis of brace strut under repeated dynamic loads, influence of shell thickness, 

stiffener thickness and stiffener spacing on shakedown limit were studied. The results show 

that the theoretical calculation method is agreed with the existing results. The limit load 

increases with the increase of shell thickness and stiffener thickness, while decreases with the 

increase of stiffener spacing.  
 

 

1 INTRODUCTION 

The main purpose of structural design and structural analysis is to determine the safety and 

bearing capacity. Elastic analysis cannot take full advantage of the bearing performance when 

the material is in plasticity. On the other hand, the limit analysis is to find the ultimate bearing 

capacity of the structure with the assumption that applied loads are time-independent and 

proportional [1]. In most cases, the external loads on the structures are neither monotonous 

nor proportional. For example, the wind loads and wave loads on the ocean engineering 

structures. Then the structure may cause fatigue failure before the external load reaching its 

ultimate bearing capacity. Shakedown analysis defines the boundaries of low cycle fatigue 

and incremental plastic collapse [2]. When the amplitude of repeated dynamic load is less 

than the shakedown load, although local plastic deformation of the structure may occur in the 

initial loading, the plastic deformation is no longer cumulative and elastic behaviour of the 

structure will be presented after a certain loading cycle [3, 4]. When the amplitude of load is 



GUO Jun, WANG Jun and YANG Di. 

 2 

more than the shakedown load, each load cycle will produce plastic deformation. The 

structure will get into the slow process of accumulating plastic deformation and eventually 

cause alternating plasticity (low cycle fatigue) and incremental plastic collapse (ratcheting) 

[5]. 

Since the kinematic shakedown theorem is proposed by Koiter, it has got great 

development and application [6, 7]. There are some research results of shakedown analysis 

considering the dynamic effects, but the calculation procedure is complex because the 

dynamic shakedown analysis often involves the integral of time. And it is less common in the 

engineering application. Meanwhile, the shakedown analysis of ocean engineering structures 

subjected to repeated dynamic loads is rare. The finite element method is used to evaluate the 

shakedown safety factor for elastic–plastic offshore structures by Fadaee et al [8]. In their 

work, Melan theorem of shakedown is employed, and shakedown theory is applied in the 

ocean engineering structures subjected to repeated wave loads. 

According to the kinematic shakedown theorem, a theoretical method of shakedown 

analysis for typical offshore structures under repeated dynamic loads was proposed. The 

shakedown problem is translated into the solving of nonlinear optimization problems. Starting 

from upper bound theorem and based on von Mises yield criterion, shakedown bound is the 

minimum of the plastic dissipation function. Meanwhile it is subjected to the compatibility, 

incompressibility and normalized constraints. The nonlinear optimization problem is analyzed 

by penalty function method and generalized Lagrange multiplier method, and computed by 

the Newton-Raphson iteration. By applying this method, the influence of structure design 

parameters on shakedown limit under repeated dynamic loads were studied. The research 

method and results can provide a reference for the shakedown analysis of ocean engineering 

structures subjected to impact loads. 

2 THE THEORETICAL METHOD OF SHAKEDOWN ANALYSIS 

2.1 Kinematic shakedown theorem 

Usually the load domain L of load amplitude applied on the structure should be determined 

first before shakedown analysis [9]. After load domain is known, the fictitious elastic stress 

( )E t  need to be solved. And it is define as the response which would appear in the fictitious 

infinitely elastic structure if this structure was subjected to the same loads as the actual one. 

However, the fictitious elastic stress ( )E t  is time-dependent. In most practical engineering 

problems, the yield condition of its requirement should be satisfied in the range 0t  . This 

means that objective function in the subsequent nonlinear programming has infinitely many 

constraint equations.  

  

Figure 1: Convex envelope of load domain Figure 2: A cyclic load path containing all vertices 
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Therefore, in order to simplify the problem, the load space needs to be converted. König 

and Kleiber [10] introduced two convex-cycle theorems in 1978: "Shakedown will happen 

over a given load domain L if and only if it happens over the convex envelope of L", as 

shown in Figure 1, and "Shakedown will happen over any load path within a given load 

domain L if it happens over a cyclic load path containing all vertices of L", as shown in 

Figure 2.  

The above two convex-cycle theorems are adapted to convex load domains and convex 

yield surfaces. This allows us to consider a cyclic load path instead of all loading history. 

Now it only needs to calculate the stress and the strain rate field at each load corner, rather 

than the integration of entire loading time. In the convex load domain L, any load ( )P t L  can 

be represented by linear combination of each corner load [11], as follows 

1

ˆ( ) ( )
m

k k

k

P t t P


                                                                                   (1) 

where 2nm   is the total number of load corners in the load domain L and n is the total 

number of varying loads. ( )kt  is the Dirac function defined by 

1

( ) 1
m

k

k

t


  ,  ( ) 0kt   ,  
1

( )
0

k

k

k

t t
t

t t



 



, 

, 
                                                       (2) 

For a given load point ( )P t , ( )kt  is uniquely determined. Accordingly, the strain ( )t  

caused by ( )P t L  can also be represented by linear combination of stress 
k  corresponding to 

each corner load ˆ
kP  such as 

1

( ) ( )
m

k k

k

t t  


 . At each instant or at each load vertex, the 

kinematical condition may not be satisfied, but the accumulated plastic strain over a load 

cycle must be kinematically compatible, such that 
1

m

k

k

 


  . According to the displacement 

matrix, the strain can be obtained by deformation matrix B: Bu  . Then the kinematically 

compatible condition becomes 
1

m

k

k

Bu


 .  

In the finite deformation theory, the elastic deformation of the material will cause the 

volume change, but the plastic flow here is incompressible. Since the change in volume 

caused by the elastic deformation is limited, and the volume of plastic deformation is 

incompressible, so the volume should be basically remain unchanged. In the small 

deformation theory, the volume change rate is:  

 1 0 0 11 22 33 11 22 33/ (1 )(1 )(1 ) 1V V V V                                                       (3) 

After considering the incompressible condition, we have one more equality constraint in 

our system at each load corner:  

11 22 33 0k k k                                                                                 (4) 

To facilitate the description and calculation, equation (4) can be written in matrix form 

0a kM    where aM  is an auxiliary matrix. According to kinematical shakedown theorem of 

Koiter, shakedown may happen if the following inequality is satisfied:  
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0 0
( ) ( )

T T
E p p p

ex in
V V

W dt t dV dt D dV W                                                     (5) 

where 
exW  is the external work, 

inW  is the internal dissipation, and pD  is the plastic dissipation 

function. When the yield function is taken as von Mises yield condition, pD  has the form:  

2

3
p s dD M                                                                             (6) 

where 
s  is the yield stress of the material, 

dM  is a diagonal matrix. In the three-dimensional 

model 
dM  has the size 6╳6 such that  1 1 1 1/ 2 1/ 2 1/ 2dM Diag .  

Based on the kinematical shakedown theorem of Koiter, the upper bound analysis of 

shakedown limit is to compute the load multiplier  , which satisfies the kinematically 

compatible condition, the incompressibility condition and the following inequality:  

0 0
( ) ( )

T T
E p p p

V V
dt t dV dt D dV                                                        (7) 

In all external loads which satisfy the kinematically admissible velocity fields, the 

minimum load corresponds to the shakedown limit load. If there is only one given load and its 

variation range is zero, that is to say there is only one load vertex, then shakedown analysis 

turns into the limit analysis. Therefore, limit analysis is a special case of shakedown analysis. 

So the computing of shakedown load multiplier   can be formulated as the analysis of 

nonlinear minimization problem:  

 min /in exW W                                                                          (8) 

or in normalized form:  

 min inW                                                                                      

s.t.： 1exW                                                                                  (9) 

According to above convex-cycle theorems, the time domain integral of external work 
exW  

and internal dissipation 
inW  can convert to the superposition at all load corners. The external 

work 
exW  and internal dissipation 

inW  can be calculated by Gauss-Legendre integration 

technique. From equation (5) and (9) one has:  

1 1 1 1 1 1 1 1

( ) ( ) ( ) ( )
e

ngm m ne m ne m NG
E p E p E p E p

ex k k k k e i ik ik i ik ik
V V

k k e k e i k i

W t dV t dV w t w t       
       

                     (10) 

where ne is the total number of elements in structural body V, ng is the total number of 

integration points in each element Ve, and wi is the weighting factor of the Gauss point i. Then 

the total number of Gauss points in structure V is NG=ne╳ng. Similarly, the same integration 

technique can be applied to external work.  

The dynamic loads, such as wave loads, can be expressed as   /t

mP t P e  . The kinematic 

shakedown theorem and the two convex-cycle theorems are used here. Therefore, we do not 

need to know the loading history. The amplitude 
mP  of dynamic load can be solved through 

the relationship between the external work 
exW  and internal dissipation 

inW .From the above 

analysis, for the structure made of elastic–perfectly plastic material, the shakedown limit load 
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multiplier can be formulated as:  

1 1

2
min

3

m NG

i s ik d ik

k i

w M   
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s.t.：                                                                                                                        
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    (11) 

Equation (11a) is the objective function. Equation (11b), (11c), and (11d) are the constraint 

conditions of nonlinear programming, among them Equation (11b) corresponds to the 

kinematically compatible condition, Equation (11c) represents the incompressible condition, 

and Equation (11d) is the normalized form of external work for easy computing. If the rigid or 

elastic perfectly plastic material model is adopted with the von Mises yield criterion, the 

objective function (11a) is only differentiable in the plastic zones while effective optimization 

methods require its gradient to be available everywhere. Limited analysis is a special case of 

shakedown analysis, and it faces the same difficulty based on kinematic formulation. Dealing 

with singular dissipation function in limit analysis, Andersen [12] et al. introduced a small 

constant 
0 , where 2

00 1 . The dissipation function became 2

02 / 3p s dD M     .  

After the introduction of constant 
0 , all elements are seen as plastic or on the plastic verge. 

In order to avoid the singularity of non-plastic zones, the above mentioned method is adopted 

here in shakedown analysis. The objective function (11a) of nonlinear programming for upper 

bound shakedown analysis can be written as:  

2

0

1 1

2
min

3

m NG

i s ik d ik

k i

w M    
 

 
  

 
                                                         (12) 

In equation (11) of nonlinear programming problem, for the sake of simplicity, the strain 

rate vector, stress vector, and deformation matrix are redefined as:  

1/2

îk i d ikw M   ,  1/2ˆ E

ik d ikM   , 1/2ˆ
i d iB w M B                                                   (13) 

Then the calculation formulas of nonlinear programming problem for the upper bound 

shakedown limit through kinematical shakedown theorem become:  

2

0

1 1

1

1 1

2
ˆ ˆmin ( )

3

s.t. :

ˆˆ 1, ( )

ˆ 0 1, 1, ( )

ˆ ˆ 1 ( )

m NG
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s ik ik

k i

m
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k

a ik

m NG
T

ik ik

k i

a

B u i NG b

M i NG k m c

d

    





 

 



 

 
  

 


  




    

 






  

 

 

 

 

   

          

     

               

                                                      (14) 
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2.2 Numerical solution of shakedown analysis 

In order to solve the nonlinear constrained optimization problem (14), the penalty method 

is used here to deal with the compatibility constraint (14b) and the incompressibility 

constraint (14c). The penalty function method compels iteration point to approach the feasible 

region through adding penalty terms composed of constraint functions to the original 

objective function. The penalty function of equality constraints in equation (14) can be written 

as:  

2

0

1 1 1 1 1

2 ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , )
3 2 2

T
NG m m m m

T T

p ik s ik ik ik i ik i ik a ik

i k k k k

c c
F u c B u B u M        

    

    
         

     
                     (15) 

where c is penalty factor. When c is sufficiently large, we will approximate the optimal 

solution of constraint problem in equation (14). The last two items on the right side of 

equation (15) are addition items. If parameters 
îk u c 、 、  satisfy the constraint conditions, 

addition items are 0. And if not, additional items bring great punishment. 

Then the optimization problem is solved by the penalty function ˆ( , , )p ikF u c  combined with 

the Lagrange multiplier method. By means of advantages of penalty function, and combined 

with the properties of Lagrange multiplier, we can construct a more suitable new objective 

function so that we will gradually achieve the optimal solution of original constraint problem 

when c goes to sufficiently large. That is the generalized Lagrange multiplier method. The 

Lagrange function is obtained by applying this method:  

1 1

ˆ ˆ ˆ ˆ( , , ) ( , , ) 1
NG m

T

pL ik p ik ik ik

i k

F u F u c     
 

 
   

 
                                                   (16) 

For finding the minimum of function ˆ( , , )p ikF u c , its first derivative of ˆ , , ik u   must be 

equal to zero [13], that is:  

2
1

0

1 1

1 1

ˆ2 ˆˆ ˆ ˆ 0, , ( )
ˆ ˆ ˆ3 2 / 3

ˆ ˆˆ 0 ( )

ˆ ˆ 1 0

m
s ikPL

ik i a ik ik
T

kik ik ik

NG m
TPL
i ik i

i k

NG m
TPL
ik ik

i k

F
c B u cM i k a

F
c B B u b
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                      (17) 

To find the solutions of equations (17), the Newton-Raphson iteration with good 

convergence is applied here:  

1 2 2 2

0 0

1

1 1 1 1

1 1

2 2ˆˆ ˆ ˆ ˆ ˆ ˆ ˆf f ( )
3 3

ˆ ˆ ˆ ˆˆ ˆ ( )

ˆˆ ˆ1

m
T T

ik ik ik ik ik i ik ik ik ik

k

NG m NG m
T T

i ik i i ik i

i k i k

NG m
T

ik ik i

i k

d c d B du d a

B d B du B B u b

d

         

 

  



   

 

 
       

 

   
      

   

 



   



     

 

                  

1 1

ˆ ( )
NG m

T

k ik

i k

c
 











                                        

                       (18) 

where:  
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1 2

0

12

0

2 2 2 ˆˆ ˆ ˆ ˆ ˆˆf
3 3 2

ˆ ˆ3
3

m
T T

ik s ik ik ik a a ik ik i ik ik

kT

ik ik

I c M cM c B u       

  


    
          

    

                      (19a) 

2 2 2 2

0 0 0

1

2 2 2 2ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆf
3 3 3 3

m
T T T

ik s ik ik ik ik i ik ik a ik ik ik ik

k

c B u c M              


 
        

 
                          (19b) 

In the systems (18) and (19), 
îkd  denotes the incremental vector of strain rate and du  is 

the incremental vector of relative displacement rate at Gaussian point i and load vertex k. d  

denotes the incremental value of Lagrange multiplier   and 
ikI  stands for the identity matrix. 

The singular problem arises again in (19a) as the denominator appears in the formulation 

(17a). Meanwhile, 1fik
 is not a symmetric matrix and it cannot be guaranteed to be a positive 

definite matrix. Therefore we are not sure the convergence of calculation method. To avoid 

the problem of calculation divergence, the second item on the right side of equation (19a) is 

eliminated and we only keep its approximate form as follows:  

1 2

0

2 2
ˆ ˆf

3 3

T

ik s ik ik ik aI c M   
 

   
 

                                                                   (20) 

From (18a), the incremental vector of strain rate has the form:  

2 1 1 2 1 1 1 1 2

0 0

1

2 2ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ(f ) (f ) (f ) f
3 3

m
T T

ik ik ik ik ik i ik ik ik ik ik ik

k

d c d B du d           



 
       

 
                    (21) 

The above equation can be expanded by load vertexes from k=1 to m, and then sum these 

m equations up. We obtain:  

3 1 2 1 1 3 1 2 1 1 3 1 1 1 2

0 0

1 1 1 1

2 2ˆˆ ˆ ˆ ˆ ˆ ˆ(f ) (f ) (f ) (f ) (f ) (f ) f
3 3

m m m m
T T

ik i ik ik ik i i ik ik ik ik i ik ik

k k k k

d c B du d             

   

               (22) 

where:  

3 2 1 1

0

1

2
ˆ ˆf (f )

3

m
T

i i ik ik ik

k

I c    



                                                                   (23) 

and 
iI  is the identity matrix in (23). Substitute (22) into (18b) and we can get:  

4 3 1 2 1 1 3 1 1 1 2

0

1 1 1 1 1 1

2ˆ ˆ ˆ ˆ ˆˆ ˆ ˆˆf (f ) (f ) (f ) (f ) f
3

NG NG m m NG m
T T T T

i i i i i ik ik ik ik i ik ik i ik i

i i k k i k

B B du B d B B u        

     

   
       

  
              (24) 

where:  

4 3 1 2 1 1

0

1

2
ˆ ˆf (f ) (f )

3

m
T

i i i ik ik ik

k

I c    



 
   

 
                                                     (25) 

By means of reduction, substituting (23) into (25) leads to:  

 4 3 1 2 1 1 3 1 3 3 1

0

1

2
ˆ ˆf (f ) (f ) (f ) f (f )

3

m
T

i i i ik ik ik i i i i i

k

I c I I     



 
       

 
                              (26) 

From (26), the system (24) can be simplified as the following form:  
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5 6 7f f fdu d                                                                               (27) 

Functions 5f , 6f , and 7f  in the above equation have the following forms respectively:  

5 4

1

ˆ ˆf f
NG

T

i i i

i

B B


                                                                                         (28a) 

6 4 2 1 1

0

1 1

2ˆ ˆ ˆ ˆf f (f )
3

NG m
T T

i i ik ik ik ik

i k

B    

 

                                                      (28b) 

7 4 1 1 2

1 1 1 1

ˆ ˆ ˆˆf f (f ) f
NG m NG m

T T

i i ik ik i ik i

i k i k

B B B u

   

 
    

 
                                         (28c) 

The relative displacement rate du  can be calculated by (27). We substitute (19b) into (28c), 

and from (14b) it can be simplified as:  

  5 1 6(f ) fdu d u                                                                           (29) 

Substituting (19b) and (22) into (21), then from (19a), (25), (26) and (29), simplifying the 

equation and the incremental vector of strain rate can be obtained:  

  8ˆ ˆ fik ik ikd d                                                                               (30) 

where:  

8 2 1 1 3 1 5 1 6 2 1 1 3 1

0 0

2 2ˆˆ ˆ ˆ ˆ ˆf (f ) (f ) (f ) f (f ) (f )
3 3

T T

ik ik ik ik i i ik ik ik i ikc B                                           (31) 

In order to calculate  d  , from (18c) we have:  

 
1 1

ˆ ˆˆ 1
NG m

T

ik ik ik

i k

d  
 

                                                                           (32) 

Substituting (30) into (32) and solving for unknown  d  , we get:  

1

8

1 1

ˆ f
NG m

T

ik ik

i k

d  



 

 
   

 
                                                                    (33) 

Refer to (9), ˆˆ T

ik ik   is normalized from (17c) and it satisfies the following equation:  

1 1

ˆˆ 1
NG m

T

ik ik

i k

 
 

                                                                                (34) 

Through (33), the normalized expression of  d   is 

1

8

1 1 1 1

ˆˆ ˆ f
NG m NG m

T T

ik ik ik ik

i k i k

d    



   

 
   

 
                                                              (35) 

According to (29) and (30), the displacement rate vector u  and the global strain rate vector 

̂  can be calculated iteratively. Thereinto, ̂  may be expressed as 11 ,
ˆ ˆ ˆ ˆ

T

ik NG m      … … . 

Thus, the new displacement rate vector u  and the global strain rate vector ̂  obtained by 

an iterative method simultaneously satisfy (17b) and (32). During the initial calculation, the 

normalization of ˆˆ T

ik ik   is processed, so as to satisfy the equation (17c). We can get Lagrange 
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multiplier   updated as  d   from (35). Iterating those computation steps may get the 

solutions of u , ̂ ,   which satisfy all the constraint conditions in (17).  

Based on the above analysis, by the kinematical shakedown theorem of Koiter, the 

calculation steps to solve the upper bound shakedown load multiplier   of structure are:  

1) Initialize the displacement rate vector 0u  and the global strain rate vector 0̂  so that the 

normalized condition is satisfied:  

0

1 1

ˆˆ 1
NG m

T

ik ik

i k

 
 

                                                                             (36) 

Usually the fictitious elastic stress E

ik  need to be calculate first, so that the load domain L 

can be determined on the basis of E

ik . And therefore 0u  and 0̂  can take the normalized 

fictitious values for their initial values corresponding to the fictitious elastic stress E

ik . Then 

set the initial value of penalty factor c and small constant 
0 . And determine the convergence 

criterion of iterative algorithm. According to the computation requirement, the maximum 

number of iterations allowed to proceed also can be set. 

2) Calculate 5f , 6f  and 7f  from (28) at the current value of u  and ̂ . 

3) Compute  d   from (35), then calculate du  and 
îkd  from (29) and (30) respectively. 

4) According to the searching method with decrease in dimension to find 
0 , so as to 

satisfy: 

 0
ˆ ˆmin ,p ikF u du d                                                                      (37) 

Update the displacement rate vector u , the global strain rate vector 
îk  and the Lagrange 

multiplier   by the following formulas: 

0u u du   , 
0

ˆ ˆ ˆ
ik ik ikd      , d                                                       (38) 

5) Check the convergence criterion of iterative calculation. If they meet all requirements 

then stop calculation, the upper bound shakedown load multiplier   is taken as the current 

value of 
0 . Otherwise repeat steps 2 to 4. 

3 RATIONALITY VERIFICATION OF THEORETICAL MODEL 

In order to verify the reasonableness of the theoretical model for upper bound shakedown 

analysis proposed in this paper, a classical example of shakedown analysis is adopted here 

and the result of theoretical method is compared with exiting results in related literatures. As 

shown in Figure 3, the square plate with a central circular hole is subjected to the biaxial 

uniform loads P1and P2. The aperture and the plate width have the ration of D/L=0.2. 

The computation applied the present method is shown in Figure 4. The present result is 

compared with the shakedown lower bound obtained by Groβ-Weege [14] and the shakedown 

upper bound obtained by Carvelli [15]. As can be seen from the figure, the computing method 

in this paper is based on the upper bound shakedown analysis, and therefore the present result 

is much closer to the Carvelli’s upper bound. In general, the computation is ideal, which 

consequently validates the effectiveness of computing method for upper bound shakedown 

analysis presented in this article. 
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Figure 3: Diagram of plate with a circular hole Figure 4: The comparison of shakedown domains 

4 SHAKEDOWN ANALYSIS FOR LOCAL STRUCTURES OF 

SEMISUBMERSIBLE PLATFORM 

The strut is at the flexure of structure and stress concentration is more likely to occur. Its 

destruction would endanger the safety of the entire platform. The strut is in long-term 

immersion of seawater and subjected to cyclic loads of variable amplitude frequently. It is 

often difficult to guarantee that the strut completely work at elastic state. Therefore, using the 

method presented in this paper, the shakedown characteristics of strut is analyzed here, and to 

determine its ultimate strength subjected to repeated dynamic loads. 

The whole model of semisubmersible platform shown in Figure 5 provides boundary 

conditions for further analysis of the local strut structure. The nodal displacement of 

corresponding position from whole model is taken as the boundary conditions of the refined 

strut. The transverse section is shown in Figure 6. The strut is mainly composed of shell, 

stiffening plate and stiffening rib. And its two terminals are connected with columns. The 

design parameters of shell thickness, stiffener thickness and stiffener spacing are considered 

here and their influence on shakedown limit of strut structure were studied. According to 

actual force condition of strut, the external loads on strut are simplified to axial force P1 which 

is applied on the two terminals of strut along the x axis and lateral concentrated load P2 which 

is perpendicular to strut along the y axis. During calculations, P1 and P2 are along the negative 

direction of x and y axis respectively. Parameters t1 and t2 represent the shell thickness and 

stiffener thickness respectively. And parameter l is the stiffener spacing. 

 
 

Figure 5: The finite element model of semisubmersible Figure 6: cross section of strut 
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While the rest structure design parameters remained unchanged, changing the shell 

thickness, make its value is 0.75t1, t1 and 1.5t1 respectively. Following the method of upper 

bound shakedown analysis in this article, the shakedown limit curves of different shell 

thickness are shown in Figure 7. The shakedown domain is different with three kinds of shell 

thickness. P1 and P2 are interacted on each other for shakedown domain. Simultaneously with 

the increase of shell thickness, the shakedown limit also will increase. 

   

Figure 7: Shakedown domains of 

different shell thickness 

Figure 8: Shakedown domains of 

different stiffener thickness 

Figure 9: Shakedown domains of 

different stiffener spacing 

And similar to the above analysis of shell thickness, keeping the rest structure design 

parameters all the same, change the stiffener thickness and make its value is 0.75t2, t2 and 1.5 

t2 respectively. The shakedown domain of strut with different stiffener thickness is shown in 

Figure 8. The influence of stiffener thickness on shakedown domain of strut is not greater 

than the shell thickness. But the shakedown limit also increases with the increase of stiffener 

thickness. Then Figure 9 shows the shakedown domain with different stiffener spacing. The 

stiffener spacing calculated here is 0.5l, l and 2l respectively. Thus it can be seen that without 

changing the rest structure design parameters, the stiffener spacing has significant effect on 

the shakedown domain. With decrease of the stiffener spacing, the global stiffness of strut is 

enhanced and the shakedown limit increases too. 

5 CONCLUSIONS 

According to the kinematical shakedown theorem of Koiter and combined with finite 

element analysis, the shakedown analysis method of ocean engineering structures subjected to 

repeated dynamic loads is proposed and the rationality of the calculation method is verified by 

an example. By taking the semisubmersible platform as the research object, the local refining 

model of strut is established. Influence of shell thickness, stiffener thickness and stiffener 

spacing on shakedown limit of strut is studied under repeated dynamic loads. It can be seen 

from the results that:  

1) With the increase of shell thickness and stiffener thickness, the shakedown limit also 

will increase;  

2) The influence of stiffener thickness on shakedown domain of strut is not greater than the 

shell thickness. Meanwhile, the stiffener spacing has significant effect on the shakedown 

domain;  

3) With decrease of the stiffener spacing, the global stiffness of strut is enhanced and the 

shakedown limit increases too. 
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