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Abstract. A simple approach based on centroidal Voronoi tessellation (CVT) is proposed 
here to create three-dimensional microstructures, for crystal plasticity finite element (CPFE) 
simulations. In the proposed approach, the grain morphology for any given specimen 
geometry is created with a predetermined grain size. Instead of using the conventional way 
that generates the Voronoi cells first and then meshes them into finite elements, this new 
approach discretises the pre-meshed specimen with the grain seeds generated by the CVT 
method. This new technique prevents the presence of high density mesh at the vertices of 
Voronoi cells, and can tessellate arbitrary geometry much more easily. Using a grain aspect 
scaling algorithm, the proposed approach can create any arbitrary microstructure with a given 
grain size and aspect ratio. Examples for non-equiaxed polycrystals with different element 
types are shown. Specimens with irregular shapes and voids are tessellated using this new 
approach. The grain aspect scaling algorithm is not limited to CVT but can be used with 
arbitrary grain seeds, offering great flexibility to model diverse material morphologies. It is 
shown that this proposed approach is simple and efficient.  

1  INTRODUCTION 

The Voronoi tessellation (VT) method has been extensively used for a host of applications 
[1]. It divides a given domain into convex polyhedra which can naturally represent individual 
crystals (grains) in metals. The Voronoi cells (also named Voronoi regions) are generated by 
the perpendicular bisectors of the lines joining the generators [2]. In the past few decades, 
people usually employed the VT method to create computational models for finite element 
and meshfree analysis [3-5]. For instance, Benedetti and Aliabadi [6] modelled intergranular 
degradation and failure in three-dimensional (3D) polycrystalline microstructures created by 
VT method using anisotropic elasticity simulations. Recently, the VT method has been 
incorporated with crystal plasticity finite element (CPFE) simulations to generate artificial 
grain structure of polycrystals. Its effectiveness and robustness have been verified for CPFE 
applications in terms of nanoindentation, fatigue, grain size and grain boundary effects, and 
twinning [7-12]. Furthermore, Abdolvand and Daymond [13] studied the effects of grain 
boundary geometry and texture on twin inception and propagation. Their CPFE simulations 
captured the main feature of the average behaviour of twins observed experimentally. 

In general, the position of the Voronoi generator (also called generating point or seed) does 



Ling Li, Luming Shen, Gwénaëlle Proust. 

 2

not coincide with the mass centroid of the Voronoi cell. The centroidal Voronoi tessellation 
(CVT) is a particular case for which the generators are the same points as the mass centroids 
of the corresponding Voronoi cells. Studies have shown that CVTs often provide optimal 
point distributions, thus making CVTs based mesh generation and optimization techniques 
very effective [14]. CVT is an optimised solution for simulating equiaxed grains, due to the 
fact that it uses perpendicular bisectors and can minimise the energy (also named error or cost) 
function. Hence it will generate a more stable microstructure with a lower system energy. 
There are several algorithms for determining CVTs, for instance, the MacQueen’s method [15] 
and the Lloyd’s method [16] are two classic theories among them. Based on these two 
methods, a probabilistic Lloyd’s method was proposed by Du et al. [4, 17], which is efficient 
and does not require the construction of the Voronoi cells until the final step. However, 
convergence with this method is difficult to achieve, since the energy function tends to be 
trapped at local minima. Very recently, Jie et al. [18] have significantly improved its 
convergence performance by introducing the simulated annealing concept. 

Some existing packages provide professional solutions to the Voronoi tessellation in both 
2D and 3D, such as Voro++ [19], Qhull [20] and Neper [21]. Additionally, Zhang et al. [22, 
23] developed a 3D controlled Poisson Voronoi tessellation (CPVT) model for generating 
polycrystalline grain structures for micromechanics simulations. The CPVT model can create 
random to uniform grain structures, and produce equivalent characteristics to the actual grain 
structure, such as the mean grain size and the grain size distribution. In spite of these existing 
approaches being effective and robust, they can only create equiaxed Voronoi cells. This is 
due to the nature of the perpendicular bisecting algorithm. For a scenario in which the grains 
are non-equiaxed, e.g. elongated grains, and the specimen domain is not a box, it is fairly 
difficult to generate the correct grain structure. For simple geometry, such as a box, one can 
create and tessellate the brick domain and then scale with the grain aspect ratio. However, for 
spheres, rings, springs, round corners, and voids, the existing methods show their limitations. 
Another problem regarding FE model generation is the mesh singularity at the vertices of 
Voronoi cells. During the procedure of meshing Voronoi cells into finite elements, it is most 
likely that it will be necessary to refine the mesh at the vertices in order to get a decent quality. 
Although Quey et al. [21] and Qian et al. [24] have proposed different solutions to this issue, 
it is still not fully addressed especially when the geometry is complex.  

In the present work, we propose a novel approach to generate grain structures with 
arbitrary specimen shape and grain aspect ratio for CPFE simulations. Instead of following 
the conventional routine that is to create the Voronoi generators first and then construct 
Voronoi cells and finally mesh them into FE models, the new approach meshes the target 
domain first using finite elements, and then categorises these elements into individual 
Voronoi aggregates, without generating cell boundaries and dealing with vertices of cells. 

2  SCHEME OF THE CVT BASED APPROACH 

2.1  Centroidal Voronoi tessellation 

Consider a domain , 2, 3d d Ω   tessellated by a set of generators   1

N

i i
g  with   1

N

i i
V


 

being the corresponding Voronoi cells. The   1

N

i i
V


 can be constructed through the VT method 

[14] as follows: 
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where   denotes the Euclidean L2 norm and N is the number of Voronoi generators. 

Therefore there will be no intersection between two adjacent Voronoi cells except the shared 
boundary surface or line, and the whole domain Ω  is discretised by all the Voronoi cells, thus  
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Normally the mass centroids of the Voronoi cells   1

N

i i
c  are of different positions as the 

generators. Assuming that the mass density of the domain is ( ) x ,   1
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as: 
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As aforementioned, CVT is the particular case where   1
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leads to a more stable geometry with a minimum level of the energy function E : 
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For the reason that the CVT can generate more regular Voronoi cells, it is adopted to 
explicitly obtain a desired grain size. The sizes of centroidal Voronoi cells are very close and 
predictable compared with the case of randomly generated. In the present work, a code library 
of CVT based on the probabilistic Lloyd’s method [25] is incorporated to produce the CVT 
generators (see [4, 17, 25] for more details). Since the mass densities in most CP simulations 
are uniform, ( ) 1 x  is used in the following sections. 

2.2  Grain aspect scaling algorithm and element categorisation 

Due to the perpendicularly bisecting algorithm of the Voronoi tessellation, the aspect ratio 
of constructed Voronoi cells tends to be equiaxial. Even though one can scale the generators 
to distribute as the desired aspect ratio, the Voronoi cells will not be in the desired aspect ratio 
after tessellation, nor the FE aggregates meshed on each cell. Therefore, instead of using the 
conventional routine that generates the Voronoi cells first and then meshes them into elements, 
we change the order of the procedure and apply a grain aspect scaling algorithm to categorise 
the FE aggregates. As a result, the new approach can create any grain structure with arbitrary 
grain aspect ratio (in terms of Cartesian coordinates) and can avoid the complex work 
involved in Voronoi cells construction and meshing. The realisation of the approach is 
explained in this section. 

At the first step, the specimen geometry is created and meshed in the framework of FE 
method, for instance, using commercial software ABAQUS [26]. Nowadays, most of the FE 
software are highly mature and intelligent, thus people can easily obtain a desired mesh. The 
meshing is controlled by the FE criteria and in some cases, can be automatic even for complex 
geometries. Hence, meshing on the whole specimen is more convenient and efficient than 
meshing the Voronoi cells. In addition, it can be easily proven from [27] that given a uniform 
mass density ( ) 1 x , the mass centroids ec  of the commonly used element types as listed in 
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table 1 coincide with the coordinates of the node centres: 

 
1

1 n
e e

j
jn 

 c x  (5) 

where n  is the number of nodes of an element and e
jx  the coordinates of each node. 

Table 1. The commonly used element types in finite element simulations. 

 
Next, the centroids ec  are used to categorise FE aggregates which represent individual 

grains. Based on the VT algorithm, if the closest Voronoi generator to an element’s e
kc  is ig , 

then element k will be categorised to Voronoi cell i and assigned the corresponding crystalline 
properties for the CPFE simulation. The main idea of the grain aspect scaling algorithm for 
arbitrary grain shape is that it scales the FE model by given grain aspect ratio, then categorises 
elements into polycrystalline aggregates, and finally scales the FE model back to the original 
coordinates. Specifically, the grain aspect ratio is applied to scale the centroids of elements’ 

ec  through dividing by the grain aspect ratio in each direction. 

 
1
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d d
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c c d
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   (6) 

where e
dc  is the scaled centroid of each element, and dr  the value of the grain aspect ratio 

1 2 3[ , , ]r r rr  in direction d, where 1 2 3min{ , , } 1r r r  . Noted that the summation convention 

does not apply in the present work. After scaling by the grain aspect ratio, the scaled domain 
of the FE model becomes 

 
1 1

[max( ) min( )] , 1,2,3e e e e
d d d d

d d

x x d
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       (7) 

Now we can tessellate the scaled domain eΩ  with a set of CVT generators ig . The 

number of generators, NP, is determined by the volumes of the domain eΩ  and the individual 

grains. 

 , 1, , , int( )e
i graini NP NP Vol Vol   eΩ
g Ω 

   (8) 

2D 

   
 3-node triangle 6-node triangle 4-node quadrilateral 8-node quadrilateral 

3D 

  

 4-node tetrahedron 10-node tetrahedron 8-node hexahedron 20-node hexahedron
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Using the VT algorithm, we can categorise all the elements 1{ }NE
k ke   (NE is the number of 

elements) to their corresponding Voronoi cells  
1

NP

i i
V


 . 

  | , 1, , , 1, , , , 1, ,e e
i k k i k jV e for i NP j NP j i k NE       c g c g         (9) 

After the categorisation, the grain aspect ratio dr  of  
1

NP

i i
V


  is determined by the uniform 

distribution of CVT generators, i.e. 1dr  . Therefore, this step produces equiaxed grains 

similarly as conventional approaches do. 
The final step is to scale the FE model back to the original coordinates, by multiplying the 

grain aspect ratio by  
1

NP

i i
V


 . Hence, the finial grain aspect ratio of the grain structure e

dr  is: 

 , 1, 2,3e
d d d dr r r r d    (10) 

As a result, the scaling algorithm guarantees that the initial model has not been changed in 
term of geometry while possessing the desired grain aspect ratio dr . In practice, since the 

coordinates of the FE model do not change, step (10) can be simply skipped by using the 
initial coordinates and updating the information of crystalline categorisation before starting 
the CPFE simulation.  

3  EXAMPLES OF ARBITRARY SHAPE AND GRAIN SIZE SPECIMEN 

During the categorisation procedure, crystalline properties are assigned to individual grains 
according to CPFE framework. The new approach by categorising the pre-meshed FE model 
to individual grains offers great flexibility to model the specimen shape and grain aspect ratio. 
Furthermore, regardless of what element type is used, the approach will generate similar grain 
structures for a same set of Voronoi generators. Fig. 1 shows a polycrystalline cylinder that 
was tessellated using tetrahedral and hexahedral elements, respectively. Each colour of the FE 
aggregates represents a specific crystallographic orientation. The dimension of the cylinder is 
1000×1000×2000 µm3 (X×Y×Z) with a given grain size of 150×150×450 µm3 (X×Y×Z). The 
specimen was meshed into 560,411 tetrahedral elements and 247,200 hexahedral elements, 
respectively. As can be seen from Fig. 1, using the same set of Voronoi generators, the grain 
structures of the CPFE model are very similar except for the grain boundary regions; this 
difference is caused by different element types. It is shown in Fig. 1 that the proposed 
approach can reach a desired grain size and handle the grain aspect ratio very well. 
Nonetheless, it is hard to conclude which element type is better for the approach since the 
grain boundary is arbitrary. As highlighted in Fig. 1, some grain boundaries are jagged using 
tetrahedral elements whereas they are straight using hexahedral elements, and vice versa. The 
jagged grain boundaries are an inherent drawback since the mesh is pre-determined; however, 
this weakness can be neglected if the element is relatively small compared with the grain size. 

Since the specimen is created and meshed in FE framework, the intrinsic difficulty of VT 
method in terms of tessellating concaved domain is completely addressed. Therefore the new 
approach can easily generate polycrystalline structures with concaved surfaces and voids. The 
flexibility of tessellating complex specimen shape is demonstrated in Fig. 2. A half sphere 
with a radius of 500 µm as shown in Fig. 2(a) has a spherical void with a radius of 300 µm. 
The model contains 269,740 hexahedral elements and the grain size is 80×160×40 µm3 
(X×Y×Z). Again, this example shows the capability of dealing with any grain aspect ratio. 
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Furthermore, an even more complex specimen, a half circular tube, is shown in Fig. 2(b). The 
inner radius of the cross section is 300 µm and the outer radius is 500 µm. It contains 196,416 
hexahedral elements and the grain size is 200×200×200 µm3 (X×Y×Z). It is clearly shown in 
Fig. 2(b) that the grains follow the CVT pattern, which is regular and equiaxed.  

 

 
Figure 1: Discretisations of a polycrystalline cylinder with a given grain size of 150×150×450 µm3 (X×Y×Z) 

using (a) tetrahedral and (b) hexahedral finite elements. Each colour represents a specific crystallographic 
orientation. 

 

 
Figure 2: Discretisations of (a) a central-voided polycrystalline half sphere with a given grain size of 80×160×40 
µm3 (X×Y×Z) and (b) a polycrystalline half circular tube with a given grain size of 200×200×200 µm3 (X×Y×Z). 

Each colour represents a specific crystallographic orientation. 

4  CONCLUSION 

A new approach for creating polycrystalline microstructures for CPFE simulations is 
developed based on the CVT method. Instead of using the conventional routine that tessellates 
specimen geometry first and then mesh the Voronoi cells, the new approach meshes specimen 
geometry into finite elements in the first place, and then categorises them into FE aggregates 
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through a grain aspect scaling algorithm. During the categorisation procedure, crystalline 
properties are assigned to individual grains before the CPFE simulation. Therefore, there is no 
need to construct the Voronoi cells and mesh each cell, which avoids a vast amount of 
calculation. It is found that most of the computing time of the new approach is spent on 
producing the centroidal Voronoi generators, while the specimen meshing and element 
categorisation only occupy a small portion of the total time. This is a great improvement of 
efficiency compared with conventional methods that construct and mesh each Voronoi cells. 

The approach can deal with concave or voided geometries without difficulty and 
completely avoids mesh refinement at the vertices of the Voronoi cells. More importantly, it 
can generate grain structures with arbitrary grain aspect ratio, providing great flexibility in 
simulating various material morphologies. Examples are shown by tessellating specimens 
which contain irregular shapes and voids with different element types and grain aspect ratios. 
Although the CVT is employed to explicitly obtain a desired grain size, this does not mean 
that the new approach is limited to CVT. As a matter of fact, the Voronoi generators can be 
arbitrary points, as long as they are consistent with the physical implications of the crystalline 
microstructure. The required input information for the new approach is only the specimen 
geometry, and grain size and shape. 
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