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Abstract. The paper introduces a positive continuous finite element method (FEM) for
coupled transport equations, incorporating the shallow water equations and a sediment
transport equation. Transport equation relates position of the bed–fluid interface to the
divergence of sediment fluxes. The equation is casted as a standard advection–diffusion
PDE suitable for an efficient positive–definite continuous FEM model.

The continuous FEM is developed by integrating a high order finite element procedure
with a conservative flux–correction that imposes sign–preservation, permitting simulation
of flows with dry fronts without spurious mass exchanges and oscillations, as well as
simulation of the evolution of layers of erodible sediment over partially non–erodible
stratums. Experiments focus on applications of the model to the simulation of real river
dynamics and evolution of sediment layers with partially non–erodible beds.

1 INTRODUCTION

Flows over flooding areas in estuaries and rivers are often simulated by the shallow
water equations. Computational domain for an estuary/river region is partially confined
by an artificial boundary connecting the area with coastal regions or with the open sea,
requiring special open boundary conditions (e.g. [8]). Rest of the boundary is mostly de-
fined by evolutionary coastlines, particularly when severe flood conditions occur. These
coastlines call for a proper numerical algorithm for the dynamics of dry–wet interfaces.
Otherwise, when sediment motion is relevant a coupled transport equation is added. Cou-
pled sediment evolution necessitates a sign–preserving method to calculate the thickness
of the erodible layer–a positive definite physical property–when natural beds are consti-
tuted by erodible and non–erodible materials. As a bonus, sign–preserving property is
beneficial to shrink the oscillatory behavior when computed values are near zero [9]. In
our case, null total height of water determines the position of the dry–wet interface.
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This work presents a sign–preserving and continuous finite element method (FEM)
for coupled transport equations, incorporating the shallow water equations [11] and a
sediment transport equation interacting with the fluid flow equations by time–dependent
sources for momentum. The bedload transport is written as convective fluxes with the
effective velocity representing transport rates averaged over the local effective thickness of
the erodible stratum. Otherwise, sediment avalanches, acting as a natural slope limiter,
are represented as diffusive fluxes with an anisotropic, inhomogeneous diffusion coefficient
depending critically on the local slope [10].

The continuous FEM is founded in the flux corrected transport (FCT) concept [9, 11]
(for seminal ideas on FCT, see [1, 17, 18]). The resulting numerical scheme preserves
global conservation and positivity simultaneously over a domain comprising totally and
partially wet elements, without non–physical flows towards or from dry regions. Besides,
the procedure does not require a specific approach for partially wet sub–domains and
precision to capture the topology of the interfaces lies in an adequate grid resolution.

The fundamental idea of FCT is to correct a conservative and sign–preserving predictor
algorithm (typically with large diffusion error) with antidiffusive contributions. These
contributions preserve the properties of the predictor scheme, resulting in an enhanced
solution with a reduced residual error. The goal is reached by choosing a high order
solution such that the correction is calculated by limiting the difference between the
contributions of the high order method and those of the predictor method. In this work
the high order solution is an approximate second order FEM (see [8] for a thorough
formulation).

Numerical experiments concentrates on the evolution of sediment layers over partially
non–erodible beds. To simulate bedload transport, two models have been adopted. First,
a typical formula for the transport qs as qs ∝ um (see e.g. [16], [14]), where u is the local
velocity and m an exponent. Second, formulas of the type of Meyer-Peter-Muller (see
e.g. [13]), where wall stress is computed in terms of a depth–integrated friction law.

2 CONTINUOUS AND NUMERICAL MODELS FOR FLOW AND SEDI-
MENT

2.1 Flow model

Depth–integrated shallow water equations considering an evolutionary bed are

∂h

∂t
+∇ · (hu) = 0 , (1)

∂(hu)

∂t
+∇ · F+∇p+Q = 0 (2)

in Ω, t ∈ [t0, T ], with the proper boundary conditions corresponding to the number of
ingoing/outgoing characteristic surfaces on the boundary, and initial conditions

h(X, t0) = h0(X)

2
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u(X, t0) = u0(X) in Ω , (3)

where h is the total height of water, u is the depth averaged velocity, F = huu, p = 1
2gh

2

(as a pressure type variable), Q = Q(h,U, X, t) is a source term, (X = (xl), l = 1, 2), Ω
is a domain in R2 bounded by Γ, h0 and u0 are specified (the latter a vector) functions
(from now on overline designates known values), U = hu, and [t0, T ] is the time interval.

Source terms are decomposed as Q=Q1(U, hn, X, t) +Q2(h,X, t) in the approximate
solution, where superscripts including n indicate time level. By incorporating typical
Chezy–Manning friction formula and assuming a parametric dependence on hn,

Q1 ≈ max[0, sgn(hn − ǫ)]
gU ‖ U ‖

(Chn)2
,

where g=‖g‖, g is the acceleration of gravity, C=R1/6/n′≈h1/6/n′ at n∆t, n′ is the Man-
ning resistant coefficient, R is the hydraulic radius and ǫ is a small number of the order
of the unit round-off. If pertinent, this kind of source comprises Coriolis force and wind
traction (see [11] for details). Moving beds do not modify the equations after depth–
integration (compare Eqs.(1) and (2) with Eqs. (1) and (2) of Ref. [11]), but originates a
time–dependent source as

Q2 = gh∇d ,

where d is the vertical position of the bottom depth. Bottom depth is defined as d(X, t) =
ds(X) + d∗(X, t), where ds is the upper position of a non–erodible stratum and d∗ is the
thickness of the erodible sediment layer.

2.2 Sediment transport model

The evolution of the effective sediment layer is governed by the conservation law

∂d∗

∂t
+∇ · qs = ∇ · qA, (4)

where qs is the vertically integrated sediment flux. The flux qA represents the avalanche
transport as a diffusion flux active if d∗ >0,

qA = −ρsK∇d (5)

with the diffusion coefficient K(x, t) depending critically on the local slope

K ≡ β max
[

0, d∗
]

max
(

0, sgn(‖ ∇d ‖ −sC)
)

, (6)

where β is the diffusivity value specified in terms of temporal and spatial resolution of
the numerical model [7], sC is the critical slope (e.g. sC ≡ tanα = 0.625 for sand, where
α is the angle of friction) and ρs = ρm(1− λ) is the bulk density of the sediment with ρm
and λ denoting, respectively, density of the grain material and porosity (volume fraction
of voids).
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Sediment flux qs is essentially ascribed to saltation, a process that includes particle-
size scale direct momentum transfer from the fluid to the grains and ejection due to grain
collisions [15]. A succesful model for saltation transport is Bagnold’s formula, adjusted
by Lettau and Lettau[4]. In Bagnold’s formula qs ∝ u∗‖u∗‖

2, where u∗ ≡ u∗u‖u‖
−1, the

friction velocity u∗ =
√

ρ−1τw, ρ is the fluid density and τw denotes the wall shear stress.
Realistic Bagnold’s formula response depends crucially on a detailed calculation of the
wall stress field. In this work we compute bedload sediment transport by two models.
First model is customized for Struiksma experiment [16], assuming qs ∝‖u‖5. The well–
known Meyer–Peter and Muller (MPM) formula (see e.g. [13]) facilitates computation of
wall stress and sediment transport by the usage of depth–integrated procedures, and is
then employed as second sediment transport model.

Meyer–Peter and Muller formula can be written as

qs = 8ρsD
3/2
m g1/2∆̃1/2 max[0, τn − 0.047]3/2 . (7)

Here, Dm is the average sediment diameter at bottom, ∆̃=(ρm-ρ)/ρ, τn is the non–
dimensional stress and 0.047 is a non–dimensional threshold stress value. Threshold stress
value depends on the local bottom slope [10][7] and hence a constant threshold value is
valid for smooth local slope variations. The non–dimensional stress is computed as

τn =
(nm

n′

)3/2( hS0

Dm ∆̃

)

where nm=(D90)
1/6/26 is the particle roughness, D90 is the particle diameter at 90 percent

finer than particle diameter, and S0 is the local bottom slope. To adapt the transport
formula to a two–dimensional approach, we assume that resultant sediment flux direction
coincides with local velocity direction.

To accommodate conservation law to the solution procedure, we arrange Eq. (4) as an
advection–diffusion equation,

∂d∗

∂t
+∇ ·Usd

∗ = −ρs∇ · K∇d . (8)

The advective velocity Us ≡ qs/d
∗ is an average velocity over the potentially mobilized

sand layer of thickness d∗. Apart from a small-scale episodic dissipative term on the rhs
— de facto combinable into the advective flux — in the asymptotic limit of constant Us,
Eq. (8) implies translation of d∗ without change of shape.

2.3 Flow and transport numerical model

To construct the flux corrected methodology, proper high order and low order solutions
must be defined. High order numerical solution is attained by the continuous characteristic
based split FEM(CBS) [8]. Time discretization is formulated by the characteristic based
method–see Appendix A in [9]–while spatial discretization employs standard Galerkin
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procedure. CBS method is completed by a suitable variable splitting (see full derivation
in Ref. [11]). The low order approach is an upwind monotone scheme independent of the
HO procedure [9, 11].

Formulation of flux corrected principles starts by writing the finite element high order
solution for Eqs. (1),(2), and (8) in matrix form as

1

∆t
C∆B = RH , (9)

where C is the left hand side matrix for the model problem (in the case of the discrete
form of Eqs. (1) and (8) corresponds to the consistent mass matrix Mc). Next, we include
the predictor-type monotonic (or positive definite) solution in matrix form as

1

∆t
M′

L∆b = RL , (10)

where M′
L is a conservative diagonal matrix ensuring sign. The right hand sides RH , RL

correspond to the high order algorithm and to the predictor algorithm, respectively. In the
present solution, forcing is modified by an additional term coming from the evolutionary
character of the bottom. B, b represent the unknown for high order and predictor method,
respectively. If Eq. (9) is written as

1

∆t
M′

L∆B = RH +
1

∆t
(M′

L −C)∆B , (11)

by subtracting Eq. (10) from Eq. (11) we have

1

∆t
M′

L

(

Bn+1 − bn+1
)

= RH −RL +
1

∆t
(M′

L −C)
(

Bn+1 −Bn
)

. (12)

High order FEM solution can be written as a convenient identity by replacing original
low and high order schemes (Eqs. (10) and (9) respectively) on the right hand side,

Bn+1 = bn+1 +
E
∑

j=1

(M′
L)

−1{(M′
L)j(B

n+1 − bn+1)j} , (13)

where the assembling of the product (M′
L)j(B

n+1−bn+1)j for each j element is explicitly
written and extended over the total number of elements. Now, introducing the element

contribution [5] as
Aj = (M′

L)
−1{(M′

L)j(B
n+1 − bn+1)j} ,

the identity (13) for a node i is

Bn+1
i = bn+1

i +
e

∑

j=1

Aj = bn+1
i +

e
∑

j=1

(AH
j −AL

j ) , (14)
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where the sum of Aj extends over e, the total number of elements j surrounding i. The
high order solution Bi at time (n + 1)∆t results from updating the LO solution at time
(n + 1)∆t by the sum of anti-diffusive contributions Aj , that counterbalance the first
order truncation error of the low order method. Accordingly, the element contribution is
the difference between that obtained by the HO solution AH , and that obtained by the
LO scheme, AL.

A low order solution b′ could be achieved by adding sufficient diffusion D to the HO
method and considering the lumped mass matrix, as proposed in [5]. This new LO solution
can be computed as

1

∆t
M′

L∆b′ = RH +D , (15)

producing the particular element contribution

Aj = (M′
L)

−1{(M′
L −C)∆B−∆tD}j . (16)

When the LO solution is computed by Eq. (15), the identity (13) is fulfilled by the original
HO solution.

Equation (14) permits to envisage the natural idea of correction by limiting the element
contributions, resembling the original concept of flux correction [1]. Then, we construct
an improved solution B̃i as

B̃n+1
i = bn+1

i +
e

∑

j=1

Ãj = bn+1
i +

e
∑

j=1

cjAj , (17)

where the cj ’s are elementwise correcting functions depending on nodal HO solution,
nodal LO solution and the element contribution to the node of the k variables, while its
range is: 0 ≤ cjk ≤ 1, cjk ∈ cj, and (k = 1, 3) for the shallow water equations.

The original FEM-FCT [5] employs the Taylor-Galerkin finite element method [2] [6] as
HO option, while the LO scheme is the same algorithm with lumped mass matrix plus
added diffusion of the type (Mc−ML)B

n. The low order method defined by Eq. (15) is of
this type and in this case the flux correction is constructed by using the element contribu-
tion given by Eq. (16), while solution (17) is conservative. A more general methodology
can be devised by including a solution b independent of the HO scheme. If element con-
tributions are computed by Eq. (16), the identity (13) yields to a modified HO solution
B′ given by

B′ = B+ (RL −RH)∆t−∆tD . (18)

The actual range of the corrected solution is between the new LO solution and the modified
solution (18). Furthermore, the correction procedure given by Eq. (17) must preserve
global conservation. The adding of anti-diffusion of the type of Eq. (16), where D ∝
(Mc − ML)B

n, ensures conservation of the correcting procedure if the LO solution is
conservative.
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2.4 Flux correction for a coupled set of variables

We construct a basic framework of computation as,

1. Computation of the high order solution B (Eq. (9)).

2. Computation of the low order solution, b (Eq. (10)).

3. Determination of bounds Bmin, Bmax (see [11]).

4. Calculation of the correcting functions by one of the procedures described below.

5. Computation of anti-diffusive contributions and B̃ (Eq. (17)).

In the case of a coupled set of variables, efficiency of the anti-diffusion technique depends
strongly on the selection of the correcting functions. The simple extension of a scalar
computation of the corrections [9] for each one of the conservative variables of Eqs. (1)
and (2) separately could result in inappropriate constraints for some of the variables. The
construction of limiters that synchronize variables has a large degree of empiricism mainly
due to its pronounced case-dependent character (see [3] and [5]). Here, we embedded in
the solution two simple synchronies. The first strategy, based on that proposed in [5],
defines the i nodal values of the correcting function as

c+i = min(c+ik) ; c−i = min(c−ik) ,

where k = 1, 3 for the set of the conservative variables and, optionally, for the non-
conservative variables. The second method limits variables with physically sound con-
straints. For this purpose, we used the nodal minimum, while now k = 1, 2, where
k = 1 is for the total height h, and k = 2 is for the non-conservative specific energy
e = h+ | u |2 /2. In case of the sediment transport equation, an independent computa-
tion of limiters is sufficient.

3 NUMERICAL EXPERIMENTS

We present a summary of a complete series of results (to be published) corresponding
to two main experiments. The first experiment is the numerical simulation of a laboratory
test carried out by Struiksma [16]. The study was performed in a straight flume with an
effective length of 11.5 m, a uniform width of 0.2 m, and a vertical brick side wall of 0.5
m. Layers of uniform sand and concrete floor were prepared according to four layouts. In
Fig. 1 third arrangement is shown, where bottom level of concrete, representing a non–
erodible pile, and initial bottom level of sand is superimposed with experimental and
numerical results after 1 h of simulation. A steady discharge (from left to right) of 9.2
l/s is prescribed, while initial mean water depth is h0=0.106 m. Transport formula and
empirical coefficient proposed by Struiksma [16] is qs=αum, where α=4.2 and m=5. It is
remarkable that, although there is not a threshold condition in the Struiksma’s formula,
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Figure 1 Computed and measured longitudinal bed profiles [16] over a non–erodible bed
layer (m) at t=1 h. Initial bed profile and non–erodible pile is superimposed

excess of erosion is not detected in model results. Agreement with experiment is good
and sign–preservation is strict.

The second study is in a river region (Huercal–Overa, Spain) having a length of more
than 2 km (Fig. 2). Across the river two bridges are located. The corresponding road
embankments can be seen in Figs. 2 and 3. In Fig. 2 we represent initial height of water
for steady state conditions of flow (210.9 m3/s), assuming a non–erodible initial bed.
Regions with the lower color of the scale (h=0) are dry areas. The triangular mesh has
17594 elements and 8959 nodes; sediment transport model is MPM model described in
Section 2.2. Initial conditions for the hydrodynamics is assumed as a steady state reached
for non–erodible conditions. Figures 3, 4, and 5 plot bottom levels for 400 s (initial), 476
s, and 514 s, respectively. Evolution shows a substantial deposition in a region downward
and close the second embankment.

4 CONCLUSIONS

A method is developed by integrating a high order finite element procedure with a con-
servative correction that imposes sign–preservation, permitting simulations of flows with
dry fronts and with evolutionary sediment bottoms and coastlines without spurious mass
exchanges and oscillations. Experiments illustrate the suitability of the model for shallow
water equations coupled with sediment transport equations casted as convection–diffusion
equation for a non–negative scalar property. In particular, the model is a useful tool to
simulate severe flood conditions in large areas, including morphodynamics processes for
which bed motion interacts with the flow and with the drying–wetting interface evolution.

8
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Figure 2 Huercal–Overa. Height of water(m). t=400 s
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Figure 3 Huercal–Overa. Bottom level(m). t=400 s
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Figure 4 Huercal–Overa. Bottom level(m). t=476 s
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Figure 5 Huercal–Overa. Bottom level(m). t=514 s
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