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Abstract. This paper deals with an energy-entropy and momentum consistent time
integration of a single thermo-viscoelastic continuum. The developed ETC time integrator
is based on a time discrete spatially weak finite element formulation, but fulfills the same
balance laws as the underlying five differential equations. Namely, in addition to the
balances of linear momentum, angular momentum and entropy, also the balances of total
energy and LYAPUNOV function are fulfilled. The spatially weak formulation is obtained
by integration by parts. Where the resulting virtual stress power term is well-known, the
virtual entropy production by conduction of heat is not so often applied, but necessary
for entropy consistency. The time discretisation is based (i) on the midpoint rule and (i7)
on non-standard time discrete differential operators due to Oscar Gonzalez. This time
integrator is a further development of the TC integrator of Ignacio Romero.

1 INTRODUCTION

In this paper, we present a so-called structure-preserving time integrator, which pre-
serve physical structures of solution spaces of time evolution equations as ODE, PDE
and DAE. Examples of structures are geometric constraints, conservation laws for en-
ergy or linear and angular momentum as well as balance laws for entropy and LyA-
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PUNOV functions. We distinguish between finite difference and finite element methods in
time. Existing finite difference methods are symplectic methods [1, 2|, energy-momentum
time stepping schemes [3], energy-dissipative schemes [4|, variational integrators [5| and
energy-entropy consistent (TC) integrators [6]. These time stepping schemes are usually
second-order accurate. In order to reach a higher-order accuracy, GALERKIN’s method
may be applied. There are higher-order accurate symplectic methods [7], GALERKIN-
based energy-momentum methods [8], GALERKIN-based energy dissipative methods [9],
GALERKIN-based variational integrators [10|. Here, we present a finite difference scheme.

2 PROBLEM DEFINITION

We consider the motion ¢ of a single continuum B (see Fig. 1 and [11]). Total defor-
mations are described by the deformation gradient F' = V¢ and the right Cauchy-Green
tensor C = FT'F. Viscous deformations with respect to the intermediate configuration
V; are measured by the internal variable C; = F! F;. Being in motion in the ambient
space with the temperature O, the continuum possesses a linear momentum p = pyV', a
temperature © = 6 o ¢ and an entropy s = Js. o ¢. The body is loaded by volume loads

. N Q o..
N | [ D

T T.B
C,=F;F, F =V & p=J(pv)op
- — oV
o ! > = 0
s = Jsc.op X C=FF gc @w/
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F, F. O=0op

R=Jrop yIxBy|1 ~— "' o I

\Bo p=1Jpeow B ) 12 \_ B

Figure 1: Motion of a single continuum.

B and R and boundary loads T" and Q. The dynamical state of the body B is described
by the total energy H = K + E consisting of the energies

1
K= [ k(p)dV = / —p-pdV and E = / e(C,s,C;)dV (1)
BO BO p BO

The stability of this state is indicated by the LYAPUNOV function V = H — OS5, where

OF
= P=2F_— 2
S /Bost and 50 (2)
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denotes the total entropy and the first PIOLA-KIRCHHOFF stress tensor, respectively. The
latter depend on the given internal energy density e = e®2(C) + e¢(C, s) + ¢"5(C, C;).
Here, the notation d(e)/d(e) indicates the derivative of functionals. The heat conduction
provides FOURIER's law Q = —x J C'VO. The non-negative total dissipation

. 1 0E  0C;
tot cdu vis . . LIS
D™ = pedn 4 D _\——Q V(? G o 0 (3)

>0 >0

emanates from the heat flux @ and the internal variable C;. The latter is determined by
the time evolution equation

oC; 4, . OF
where . .
V—l ) = Z‘V_l ; V_l - = ]IdevT o ]Ivol
(C ) C C 2Vdev + ndimVVOl (5)

leading to a positive-definite quadratic form with respect to the stress tensor JF/JC;.

3 THE STRONG FORMS

In this section, we recall the local differential equations or strong forms of the considered
problem and show their physical structure.

3.1 The derivation from the balances of linear momentum and entropy

We obtain two local equations of motion from the balance of linear momentum

)
/ Pw=| Bav+ [ TdA with T=PN (6)
Bo ot Bo 0By

by introducing the linear momentum p as independent variable by means of the LEGEN-
DRE transform of the material velocity V' = d¢/0t. Thus, we obtain

Op Op 1 oH
— = DivP + B — = = — 7
or — OvE T o~ 2P= 5p 9
Analogously, we consider two heat conduction equations. The first strong form is the
local balance of entropy emanating from the entropy inequality principle

Dot Os R 1
dV = R | — Q- -NdA >
/BO 5 /B {at @] V' s @ =0 ®)

and the second is the LEGENDRE transform between temperature and entropy. In this way,
we introduce the temperature also as an independent field, and obtain the two equations

0s 1 - de OH

— = — |D"™ + R — Di 0 =_—=— 9

o gD 9s ~ 0s ®)
But the last heat conduction equation is not a HAMILTONIAN state equation, due to the
lack of a time differential operator on the left side.

3
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3.2 The fulfillment of the balances of angular momentum and energy

The above strong forms also fulfill the balances of angular momentum, total energy
and LYAPUNOV function. The balance of angular momentum

0

/[go—:co]x—pdv = [go—a:o]deV+/ [ —xo] x T dA (10)
Bo ot ~ JBo ey

Eq. (7)

is defined with respect to the reference point xy = const.. Here, we have to taken into

account the symmetry of the tensor PF'. The balance of total energy

OH
E — pmec + Pthe (11)

results from adding the balance of mechanical and thermal energy. Thereby, the equations
of motion lead to the balance of mechanical energy

0H oOp O0H GF} Op / Op
I P 0 B el | e
ok /0t pint prmee

balancing kinetic power and stress power with external mechanical power. The heat
conduction equations lead to the balance of thermal energy

H H ;
/[%—%+§Cl:aact’l}dv\:r/ R dV — Q- NdA (13)
BQ/_/ hl,_/ Eq. (9) < Bo VBBO
pent _ Dvis Ppthe

balancing entropy power and viscous dissipation with external thermal power. The bal-
ance of LYAPUNOV function, given by

ov 0H 0s
— = - — 14
ot ot O /B ot v (14)
~~ 0\~
Eq. (11) Eq. (9)

results from the balance of total energy and entropy and provides the stability estimate

ov o
gV _ | P= prot gy <
> /B o V<0 (15)

without mechanical and thermal loads, but with temporally constant thermal and me-
chanical DIRICHLET boundary.

4 THE TIME-CONTINUOUS SPATIALLY WEAK FORMULATION

In this section, we derive a spatially weak formulation, which is the basis for a finite
element method in space. Thereby, we take into account the aim of the exact fulfillment
of all above summarized balance laws with standard finite elements.
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4.1 The derivation from the strong forms

By integration by parts, we obtain the well-known weak form

0 oH
/ [5¢-—p+V(5go):—] dV = [ dp-BdV + | dp-TdA (16)
Bo at (5F Bo dBo
of the first equation of motion with the well-known virtual stress power, and
dp O0H

6p-{———}d1/:0 17
/Bo ot op (17)

as the weak form of the second equation of motion. The integration by parts

) o )
—/—GDindV:/V(—@)-QdV—/ 0. NdA (18)
5, © 5, \© o8, ©

of the heat flux leads to the weak form of the first heat conduction equation, given by

Os 00 0H 0C; 00 00
[le5+%ia G- [|erv(F) e
—_——

_ Dvis
_ 5—@Q-NdA
o8, ©

This weak form is not so often applied, but necessary for entropy consistency. The weak
second equation of heat conduction represents the weak constitutive equation

/8055 {@ — %—ﬂ dv =0 (20)

which is comparable with a part of the first variation of a Hu-WASHIZU functional [12].

4.2 The fulfillment of all balance laws of continuum mechanics

First, we choose a constant test function dp(X,t) = ¢ = const. in the first weak
equation of motion, and arrive at the balance of linear momentum

c[/g [Z—ZZ—B} dv—/%onAl:o (21)

N

Eq. (6)

Then, we choose the test functions dp(X,t) = ¢ x [p(X,t) — x| and op(X,t) =
c X p(X,t) in the equations of motion. In this way, we obtain the balance of angu-
lar momentum

c-{/lgo[go—wo]x{aa—IZ—B} dv_/%o[@_wo]deA}:o (22)

(. J/

-~

Eq. (10)

5
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by bearing in mind the symmetry of the tensor PF'. The constant test function 600(X,t) =
O = const. in the first weak heat conduction equation leads to the balance of entropy

Dcdu/@

o U [@—M—v(i)g} dv + QNdA}: (23)
| 00O o 5.0

g

Eq~v(8)

emanating from the entropy inequality principle with D%* > 0. Furthermore, the test
functions dp(X,t) = 0p(X,t)/0t and dp(X,t) = Op(X,t)/0t lead to the balance of
mechanical energy

8k/8t pint Pmec
T6H op 6H OF D )
LR .Bd TdA 24
/30[51) ot T oF 81&] /B V't | o (24)

Eq. (12)

Next, we consider the test functions 00(X,t) = O(X,t) and ds(X,t) = 9s(X,t)/0t.
This leads to the balance of thermal energy, given by

pent 7Dvis Pthe

oI 05 OH0C, ’ 7 °
S
av=[Rrav NdA 5
Eq. (13)

Addition of Eq. (24) and (25) then leads to the balance of total energy

8_H: % Bin dv+/ % r_Q.N|da (26)

ot

Eq~v(11)

The balance of LYAPUNOV function is obtained in two ways. The first do not exploit the
balance of total energy and entropy, and is therefore also accessible for other schemes.
Here we choose the test functions 60(X,t) = O(X,t) — O and ds(X,t) = 0s(X,t)/0t
as well as add the balance of mechanical energy [8]. We prefer to take the second way,

given by
ov OH 0s
— = — —0y —dV 27
ot ot /B ot (27)
N 0
Eq. (26) Eq. (23)

This corresponds to the procedure in Eq. (14) used for the strong forms.
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Figure 2: The considered boundary conditions in the simulations.

4.3 The considered boundary conditions

We prescribe vanishing displacements on the DIRICHLET boundary 0,85y, and a tran-
sient traction T'(t) on the NEUMANN boundary 0rBy (see Fig. 2). On the mechanical
DIRICHLET boundary, we exploit the vanishing test function, such that

/ 6go-TdA:/ 5 -TdA+/ 690-T(t)dA:/ So-T(H)dA  (28)
aBo awzs’o\::]" drBo drBo

Then, we prescribe the ambient temperature ©,, on the DIRICHLET boundary de By, and
an inward normal heat flux Q(¢) on the NEUMANN boundary dgBy (see Fig. 2). On
the thermal DIRICHLET boundary, we apply the LAGRANGE multiplier technique [13] for
determining the outward normal entropy flux. Therefore, the boundary integral reads

@Q-NdA: 0O \odA — @Q(t) dA (29)
9By © 0o Bo 9qBo ©
and leads with the constraint
/ e [0 —O,]dA=0 (30)
deBo

to the temperature O, at the finite element nodes on the thermal DIRICHLET boundary
OoBy. The LAGRANGE multiplier \g denotes the outward normal entropy flux of dgBy.

5 THE TIME-DISCRETE SPATIALLY WEAK FORMULATION

After deriving the spatially weak forms, we consider now their time discretisation by
an integration rule and time-discrete differential operators.
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5.1 The ETC integrator

The ETC integrator is represented by a time-discrete form of all evolution equations,
which preserve the balance laws of continuum mechanics in a discrete sence. We restrict
us to second-order accuracy and apply the midpoint rule for integrating the weak forms.
In order to reach exact fulfillment of the fundamental theorem of calculus in a discrete
sence, we apply the second-order accurate time-discrete differential operators A(e)/A(e)
and A”(e)/A(e) [3]. Consequently, for a single-variable function as the kinetic energy
and the state variables, we use the second order accurate time-discrete operator

af(szr%)
AF Oy P = Flz) - ot Ol — 2 -
N 0z * [Zni1 — 20 © [Zna1 — 2] [Zns1 = 20

for the functions f € {k,s,p,¢,C;} with arguments z € {t,s,p,C,C;}. The corre-
sponding inner products are denoted by ® € { ,-,:}. This formula includes

g .f(zn-l—l) B .f(zn)

Special case 1: Scalar-valued z: =

At lnt1 — tn (32)
Ak Ok(pni1) 1
Special case 2: Quadratic f: p = Tﬂ) = ;anr%

For the total energy as multi-variable functional, we use the second-order accurate parti-
tioned discrete derivatives

APH Ak
- ith & d i

Ap Ap wi (p) an G(C, S, C )
APH » Ae N Ae

AF = AC Sn7ci" AC Sn+17ci”+1: (33)
APH B 1| Ae . Ae

AS o 2 :AS Cn7cin+1 AS Cn+1,Cin i
APH B 1 Ae N Ae

ACZ N 2 Acz Ch,sn ACZ Ch41,Sn+1

In this way, we approximate ¢, p, s and C; globally continuous over the considered time
interval [0, 7], and perform a midpoint evaluation (), 41/ = [(®), + (®)n11]/2 of these
state variables. The test functions 0p,,; and d¢,,, are constant over the time step and
admit interelement discontinuities. We obtain the time-discrete weak forms

Ap APH
op, -{—— }dVZO
Bo L At Ap
> ar) [ o
0p,11 - —— + V(dp, r——— | dV = [ 0, ;- B1dV + 0@, -T1dA
/Bo|:90+1 At (‘P+1) AF BO‘PH ! 8TBO‘P+1 !

(34)
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The transient loads are evaluated at the midpoint of the time step, which indicate the

index 1/2. The time-discrete weak form of the heat conduction equations are given by

ATH
As

58n+1 : |:®n+1 -

; } AV =0 (35)

and

As 5@n+1 APH . ACZ . 5@n+1 6@n+1
/Bo[a@nﬂxﬁ AT, At ]dV - /BO{V(@“+1 Qi+ 5 Ry|dV

n+1
5 _
R Y WY R R
8@80 8@80@n+1 2

(36)
Note that both the temperature ©,.; and the test function 00, are constant over
the time step. This approximation is perfectly compatible with the ideas that thermal
displacements, defined by © = 0a/0t [14], are continuous as the motion ¢. The time
evolutions of the internal variable and the thermal DIRICHLET boundary nodes are de-
termined by the time-discrete equations

AC; APH
A(i : = 0 OAnt1[Ont1 — Og]dA = 0 (37)

vic; )
+ ( n_‘_%) ACZ 8680

According to |7], the LAGRANGE multiplier is also constant over the time step. Note
that this is also perfectly compatible with the temperature approximation, because the
LAGRANGE multiplier coincides with an entropy flux.

5.2 The fulfillment of time-discrete balance laws of continuum mechanics

The time discrete balance of linear momentum is obtained by d¢,,;(X) = ¢ = const.,
and takes the form

A i
c{/ {—p—Bl} dv — TldA]zo (38)
L/s, LA 2 )

~
Time discrete balance of linear momentum

Then, we choose 6@, 1 (X) = ¢ X [@,41/2(X) — o] and 6p, 1 (X) = ¢ X P, 5(X).
The time-discrete balance of angular momentum is then given by

CI/B [QOH% —azo} X {% —B%] dV—/BTBO[gon+% —azo} x T dA} -0 (39)

0

~
Time discrete balance of angular momentum
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The time discrete balance of entropy is obtained by the test function 60,,.1(X) = O =
const., and takes the form

tot ~
As DY +Ri Q1
0. U 25z 2 dV+/ )\anA—/ %2 g4A| =0 (40)
Bo At @n+1 0o Bo dgBo ™~ n+1

-~

Time discrete entropy inequality principle with D% >0
2

Now, we choose ¢, (X) = Ap(X)/At and 6p, ,(X) = Ap(X)/At. In this way, we
obtain the time discrete balance of mechanical energy

A A _
:/—(P-B;dv—i—/ —(P-T;dA (41)
Sn+1,Cin+1 Bo At 2 91 Bo At 2

s

AK

n 1 | AE AFE
At 2

_l’_
Atl, o | A

Time discrete balance of mechanical energy

Then, by choosing 60,,1(X) = 0,11(X), ds,11(X) = As(X)/At and 6\, 1(X) =
Ant1(X), we arrive at the time discrete balance of thermal energy

1| AE AE N AE AE
2| Atlg, o, Atlogc, Blleis Al
_ 42
:/R;dl/—@w )\n+1dA+ Q:1dA ( )
By ° 90 Bo 0By

Time discrete balance of thermal energy

The time discrete balance of total energy is again obtained simply by adding the time
discrete balance of mechanical and thermal energy. We arrive at the relation
AH Ap
At gl At

Ap - i
B%+R%}dv+ P T dA - O, An+1dA+/ 01 dA

BTBO At 6@80 6Q BO

N

Time discrete balg;lce of total energy
(43)
The time discrete LYAPUNOV balance is again obtained in two ways. First by choosing
00,11(X) = 0,11(X) — O, 05,41(X) = As(X) /AL, 0X11(X) = Apy1(X) and adding
the time discrete balance of mechanical energy. Second by subtracting the time discrete
balances of total energy and entropy, which means

AV AH As

- = — — —— 44

At At Occ EWAY; dv (44)
~——

Time discrete balance of total energy i o discrete balance of entropy

which also eliminates the LAGRANGE multiplier.

10
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6 NUMERICAL EXAMPLE

As numerical example, we consider a disc, which is bound between two plates (mechan-
ical DIRICHLET boundary d,8;), and partly uninsulated (thermal DIRICHLET boundary
OBy (see Fig. 6). The motion is initiated by an initial velocity field, and the heat con-
duction is forced by the thermal DIRICHLET boundary. For a small time step size, the
midpoint rule and the ETC integrator compute practically the same results: The ring
cools down to ambient temperature. But for a large time step size, the midpoint rule
reveals its limited stability region. The midpoint rule tends to hour-glassing in the dis-
placements and waves in the temperature distribution in the radial direction. This is

contrary to the ETC integrator.

insulated boundas 9By

t=1.54s

310K

305K

300K

295K

29.5 30 30.5 31 31.5 32

@ [m]

t=1.54s

29.5 30 30.5 31

@ [m]

Figure 3: Rail-bound partly uninsulated disc.
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