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Melanie Krüger, Mihael Groÿ and Peter Betshpunov funtions. We distinguish between �nite di�erene and �nite element methods intime. Existing �nite di�erene methods are sympleti methods [1, 2℄, energy-momentumtime stepping shemes [3℄, energy-dissipative shemes [4℄, variational integrators [5℄ andenergy-entropy onsistent (TC) integrators [6℄. These time stepping shemes are usuallyseond-order aurate. In order to reah a higher-order auray, Galerkin's methodmay be applied. There are higher-order aurate sympleti methods [7℄, Galerkin-based energy-momentum methods [8℄, Galerkin-based energy dissipative methods [9℄,Galerkin-based variational integrators [10℄. Here, we present a �nite di�erene sheme.2 PROBLEM DEFINITIONWe onsider the motion ϕ of a single ontinuum B (see Fig. 1 and [11℄). Total defor-mations are desribed by the deformation gradient F = ∇ϕ and the right Cauhy-Greentensor C = F T F . Visous deformations with respet to the intermediate on�guration
Vi are measured by the internal variable C i = F T

i F i. Being in motion in the ambientspae with the temperature Θ∞, the ontinuum possesses a linear momentum p = ρ0V , atemperature Θ = θ ◦ ϕ and an entropy s = Jsc ◦ ϕ. The body is loaded by volume loads
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Figure 1: Motion of a single ontinuum.
B and R and boundary loads T and Q. The dynamial state of the body B is desribedby the total energy H = K + E onsisting of the energies

K =

∫

B0

k(p) dV =

∫

B0

1

ρ
p · p dV and E =

∫

B0

e(C, s, Ci) dV (1)The stability of this state is indiated by the Lyapunov funtion V = H − Θ∞S, where
S =

∫

B0

s dV and P = 2 F
δE

δC
(2)2



Melanie Krüger, Mihael Groÿ and Peter Betshdenotes the total entropy and the �rst Piola-Kirhhoff stress tensor, respetively. Thelatter depend on the given internal energy density e = eela(C) + ethe(C, s) + evis(C, Ci).Here, the notation δ(•)/δ(•) indiates the derivative of funtionals. The heat ondutionprovides Fourier's law Q = −κ J C−1∇Θ. The non-negative total dissipation
Dtot = Dcdu + Dvis = −

1

Θ
Q · ∇Θ

︸ ︷︷ ︸

≥0

−
δE

δCi
:
∂C i

∂t
︸ ︷︷ ︸

≥0

≥ 0 (3)emanates from the heat �ux Q and the internal variable Ci. The latter is determined bythe time evolution equation
∂C i

∂t
= −V̄

−1(Ci) :
δE

δCi
(4)where

V̄
−1(Ci) = C i V

−1Ci V
−1 =

1

2V dev
I
devT

+
1

ndimV vol
I
vol (5)leading to a positive-de�nite quadrati form with respet to the stress tensor δE/δCi.3 THE STRONG FORMSIn this setion, we reall the loal di�erential equations or strong forms of the onsideredproblem and show their physial struture.3.1 The derivation from the balanes of linear momentum and entropyWe obtain two loal equations of motion from the balane of linear momentum

∫

B0

∂p

∂t
dV =

∫

B0

B dV +

∫

∂B0

T dA with T = PN (6)by introduing the linear momentum p as independent variable by means of the Legen-dre transform of the material veloity V = ∂ϕ/∂t. Thus, we obtain
∂p

∂t
= DivP + B

∂ϕ

∂t
=

1

ρ
p ≡

δH

δp
(7)Analogously, we onsider two heat ondution equations. The �rst strong form is theloal balane of entropy emanating from the entropy inequality priniple

∫

B0

Dtot

Θ
dV =

∫

B0

[
∂s

∂t
−

R

Θ

]

dV +

∫

∂B0

1

Θ
Q · N dA ≥ 0 (8)and the seond is the Legendre transform between temperature and entropy. In this way,we introdue the temperature also as an independent �eld, and obtain the two equations

∂s

∂t
=

1

Θ

[
Dvis + R − DivQ

]
Θ =

∂e

∂s
≡

δH

δs
(9)But the last heat ondution equation is not a Hamiltonian state equation, due to thelak of a time di�erential operator on the left side.3



Melanie Krüger, Mihael Groÿ and Peter Betsh3.2 The ful�llment of the balanes of angular momentum and energyThe above strong forms also ful�ll the balanes of angular momentum, total energyand Lyapunov funtion. The balane of angular momentum
∫

B0

[ϕ − x0] ×
∂p

∂t
dV =

︸︷︷︸

Eq. (7)

∫

B0

[ϕ − x0] × B dV +

∫

∂B0

[ϕ − x0] × T dA (10)is de�ned with respet to the referene point x0 = const.. Here, we have to taken intoaount the symmetry of the tensor PF . The balane of total energy
∂H

∂t
= Pmec + P the (11)results from adding the balane of mehanial and thermal energy. Thereby, the equationsof motion lead to the balane of mehanial energy

∫

B0

[
δH

δp
·
∂p

∂t
︸ ︷︷ ︸

∂k/∂t

+
δH

δF
:
∂F

∂t

]

︸ ︷︷ ︸

pint

dV =
︸︷︷︸

Eq. (7)

∫

B0

∂ϕ

∂t
· B dV +

∫

∂B0

∂ϕ

∂t
· T dA

︸ ︷︷ ︸

Pmec

(12)balaning kineti power and stress power with external mehanial power. The heatondution equations lead to the balane of thermal energy
∫

B0

[
δH

δs

∂s

∂t
︸ ︷︷ ︸

pent

+
δH

δC i
:
∂C i

∂t

]

︸ ︷︷ ︸

−Dvis

dV =
︸︷︷︸

Eq. (9)

∫

B0

R dV −

∫

∂B0

Q · N dA

︸ ︷︷ ︸

P the

(13)balaning entropy power and visous dissipation with external thermal power. The bal-ane of Lyapunov funtion, given by
∂V

∂t
≡

∂H

∂t
︸︷︷︸

Eq. (11)

−Θ∞

∫

B0

∂s

∂t
︸︷︷︸

Eq. (9)

dV (14)results from the balane of total energy and entropy and provides the stability estimate
∂V

∂t
= −

∫

B0

Θ∞

Θ
Dtot dV ≤ 0 (15)without mehanial and thermal loads, but with temporally onstant thermal and me-hanial Dirihlet boundary.4 THE TIME-CONTINUOUS SPATIALLY WEAK FORMULATIONIn this setion, we derive a spatially weak formulation, whih is the basis for a �niteelement method in spae. Thereby, we take into aount the aim of the exat ful�llmentof all above summarized balane laws with standard �nite elements.4



Melanie Krüger, Mihael Groÿ and Peter Betsh4.1 The derivation from the strong formsBy integration by parts, we obtain the well-known weak form
∫

B0

[

δϕ ·
∂p

∂t
+ ∇(δϕ) :

δH

δF

]

dV =

∫

B0

δϕ · B dV +

∫

∂B0

δϕ · T dA (16)of the �rst equation of motion with the well-known virtual stress power, and
∫

B0

δp ·

[
∂ϕ

∂t
−

δH

δp

]

dV = 0 (17)as the weak form of the seond equation of motion. The integration by parts
−

∫

B0

δΘ

Θ
DivQ dV =

∫

B0

∇

(
δΘ

Θ

)

· Q dV −

∫

∂B0

δΘ

Θ
Q · N dA (18)of the heat �ux leads to the weak form of the �rst heat ondution equation, given by

∫

B0

[

δΘ
∂s

∂t
+

δΘ

Θ

δH

δC i
:

∂C i

∂t

]

︸ ︷︷ ︸

−Dvis

dV =

∫

B0

[
δΘ

Θ
R + ∇

(
δΘ

Θ

)

· Q

]

dV

−

∫

∂B0

δΘ

Θ
Q · N dA

(19)This weak form is not so often applied, but neessary for entropy onsisteny. The weakseond equation of heat ondution represents the weak onstitutive equation
∫

B0

δs

[

Θ −
δH

δs

]

dV = 0 (20)whih is omparable with a part of the �rst variation of a Hu-Washizu funtional [12℄.4.2 The ful�llment of all balane laws of ontinuum mehanisFirst, we hoose a onstant test funtion δϕ(X, t) = c = const. in the �rst weakequation of motion, and arrive at the balane of linear momentum
c ·

[∫

B0

[
∂p

∂t
− B

]

dV −

∫

∂B0

T dA

]

︸ ︷︷ ︸

Eq. (6)

= 0 (21)Then, we hoose the test funtions δϕ(X, t) = c × [ϕ(X, t) − x0] and δp(X , t) =
c × p(X, t) in the equations of motion. In this way, we obtain the balane of angu-lar momentum

c ·

[∫

B0

[ϕ − x0] ×

[
∂p

∂t
− B

]

dV −

∫

∂B0

[ϕ − x0] × T dA

]

︸ ︷︷ ︸

Eq. (10)

= 0 (22)5



Melanie Krüger, Mihael Groÿ and Peter Betshby bearing in mind the symmetry of the tensor PF . The onstant test funtion δΘ(X, t) =
Θ∞ = const. in the �rst weak heat ondution equation leads to the balane of entropy

Θ∞

[∫

B0

[
∂s

∂t
−

Dvis + R

Θ
−

Dcdu/Θ
︷ ︸︸ ︷

∇

(
1

Θ

)

· Q

]

dV +

∫

∂B0

1

Θ
Q · N dA

]

︸ ︷︷ ︸

Eq. (8)

= 0 (23)emanating from the entropy inequality priniple with Dtot ≥ 0. Furthermore, the testfuntions δϕ(X, t) = ∂ϕ(X, t)/∂t and δp(X, t) = ∂p(X, t)/∂t lead to the balane ofmehanial energy
∫

B0

∂k/∂t
︷ ︸︸ ︷[
δH

δp
·
∂p

∂t
+

pint

︷ ︸︸ ︷

δH

δF
:
∂F

∂t

]

dV =

Pmec

︷ ︸︸ ︷∫

B0

∂ϕ

∂t
· B dV +

∫

∂B0

∂ϕ

∂t
· T dA

︸ ︷︷ ︸

Eq. (12)

(24)Next, we onsider the test funtions δΘ(X, t) = Θ(X, t) and δs(X, t) = ∂s(X , t)/∂t.This leads to the balane of thermal energy, given by
∫

B0

pent

︷ ︸︸ ︷[
δH

δs

∂s

∂t
+

−Dvis

︷ ︸︸ ︷

δH

δCi

:
∂C i

∂t

]

dV =

P the

︷ ︸︸ ︷∫

B0

R dV −

∫

∂B0

Q · N dA

︸ ︷︷ ︸

Eq. (13)

(25)Addition of Eq. (24) and (25) then leads to the balane of total energy
∂H

∂t
=

∫

B0

[
∂ϕ

∂t
· B + R

]

dV +

∫

∂B0

[
∂ϕ

∂t
· T − Q · N

]

dA

︸ ︷︷ ︸

Eq. (11)

(26)The balane of Lyapunov funtion is obtained in two ways. The �rst do not exploit thebalane of total energy and entropy, and is therefore also aessible for other shemes.Here we hoose the test funtions δΘ(X, t) = Θ(X, t) − Θ∞ and δs(X, t) = ∂s(X , t)/∂tas well as add the balane of mehanial energy [8℄. We prefer to take the seond way,given by
∂V

∂t
=

∂H

∂t
︸︷︷︸

Eq. (26)

−Θ∞

∫

B0

∂s

∂t
dV

︸ ︷︷ ︸

Eq. (23)

(27)This orresponds to the proedure in Eq. (14) used for the strong forms.6
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Figure 2: The onsidered boundary onditions in the simulations.4.3 The onsidered boundary onditionsWe presribe vanishing displaements on the Dirihlet boundary ∂ϕB0, and a tran-sient tration T̄ (t) on the Neumann boundary ∂TB0 (see Fig. 2). On the mehanialDirihlet boundary, we exploit the vanishing test funtion, suh that
∫

∂B0

δϕ · T dA =

∫

∂ϕB0

δϕ
︸︷︷︸

=:0

·T dA +

∫

∂T B0

δϕ · T̄ (t) dA =

∫

∂TB0

δϕ · T̄ (t) dA (28)Then, we presribe the ambient temperature Θ∞ on the Dirihlet boundary ∂ΘB0, andan inward normal heat �ux Q̄(t) on the Neumann boundary ∂QB0 (see Fig. 2). Onthe thermal Dirihlet boundary, we apply the Lagrange multiplier tehnique [13℄ fordetermining the outward normal entropy �ux. Therefore, the boundary integral reads
∫

∂B0

δΘ

Θ
Q · N dA =

∫

∂ΘB0

δΘ λΘ dA −

∫

∂QB0

δΘ

Θ
Q̄(t) dA (29)and leads with the onstraint

∫

∂ΘB0

δλΘ [Θ − Θ∞] dA = 0 (30)to the temperature Θ∞ at the �nite element nodes on the thermal Dirihlet boundary
∂ΘB0. The Lagrange multiplier λΘ denotes the outward normal entropy �ux of ∂ΘB0.5 THE TIME-DISCRETE SPATIALLY WEAK FORMULATIONAfter deriving the spatially weak forms, we onsider now their time disretisation byan integration rule and time-disrete di�erential operators.

7



Melanie Krüger, Mihael Groÿ and Peter Betsh5.1 The ETC integratorThe ETC integrator is represented by a time-disrete form of all evolution equations,whih preserve the balane laws of ontinuum mehanis in a disrete sene. We restritus to seond-order auray and apply the midpoint rule for integrating the weak forms.In order to reah exat ful�llment of the fundamental theorem of alulus in a disretesene, we apply the seond-order aurate time-disrete di�erential operators ∆(•)/∆(•)and ∆P (•)/∆(•) [3℄. Consequently, for a single-variable funtion as the kineti energyand the state variables, we use the seond order aurate time-disrete operator
∆f

∆z
=

∂f (zn+ 1

2
)

∂z
+

f (zn+1) − f (zn) −
∂f (zn+ 1

2
)

∂z
⊙ [zn+1 − zn]

[zn+1 − zn] ⊙ [zn+1 − zn]
[zn+1 − zn]

(31)for the funtions f ∈ {k, s, p, ϕ, Ci} with arguments z ∈ {t, s, p, C, C i}. The orre-sponding inner produts are denoted by ⊙ ∈ { , ·, :}. This formula inludesSpeial ase 1: Salar-valued z: ∆f

∆t
=

f(zn+1) − f(zn)

tn+1 − tnSpeial ase 2: Quadrati f : ∆k

∆p
=

∂k(pn+ 1

2
)

∂p
≡

1

ρ
pn+ 1

2

(32)For the total energy as multi-variable funtional, we use the seond-order aurate parti-tioned disrete derivatives
∆P H

∆p
=

∆k

∆p
with k(p) and e(C, s, Ci)

∆P H

∆F
= F n+ 1

2

[

∆e

∆C

∣
∣
∣
∣
sn,Cin

+
∆e

∆C

∣
∣
∣
∣
sn+1,Cin+1

]

∆P H

∆s
=

1

2

[

∆e

∆s

∣
∣
∣
∣
Cn,Cin+1

+
∆e

∆s

∣
∣
∣
∣
Cn+1,Cin

]

∆P H

∆C i
=

1

2

[

∆e

∆Ci

∣
∣
∣
∣
Cn,sn

+
∆e

∆C i

∣
∣
∣
∣
Cn+1,sn+1

]

(33)
In this way, we approximate ϕ, p, s and C i globally ontinuous over the onsidered timeinterval [0, T ], and perform a midpoint evaluation (•)n+1/2 = [(•)n + (•)n+1]/2 of thesestate variables. The test funtions δpn+1 and δϕn+1 are onstant over the time step andadmit interelement disontinuities. We obtain the time-disrete weak forms

∫

B0

δpn+1 ·

[
∆ϕ

∆t
−

∆P H

∆p

]

dV = 0

∫

B0

[

δϕn+1 ·
∆p

∆t
+ ∇(δϕn+1) :

∆P H

∆F

]

dV =

∫

B0

δϕn+1 · B 1

2
dV +

∫

∂T B0

δϕn+1 · T̄ 1

2
dA(34)8



Melanie Krüger, Mihael Groÿ and Peter BetshThe transient loads are evaluated at the midpoint of the time step, whih indiate theindex 1/2. The time-disrete weak form of the heat ondution equations are given by
∫

B0

δsn+1 ·

[

Θn+1 −
∆P H

∆s

]

dV = 0 (35)and
∫

B0

[

δΘn+1
∆s

∆t
+

δΘn+1

Θn+1

∆P H

∆C i
:

∆Ci

∆t

]

dV =

∫

B0

[

∇

(
δΘn+1

Θn+1

)

· Q 1

2
+

δΘn+1

Θn+1
R 1

2

]

dV

−

∫

∂ΘB0

δΘn+1 λn+1 dA +

∫

∂QB0

δΘn+1

Θn+1

Q̄ 1

2
dA(36)Note that both the temperature Θn+1 and the test funtion δΘn+1 are onstant overthe time step. This approximation is perfetly ompatible with the ideas that thermaldisplaements, de�ned by Θ = ∂α/∂t [14℄, are ontinuous as the motion ϕ. The timeevolutions of the internal variable and the thermal Dirihlet boundary nodes are de-termined by the time-disrete equations

∆Ci

∆t
+ V̄

−1(Ci
n+ 1

2

) :
∆P H

∆C i

= 0

∫

∂ΘB0

δλn+1 [Θn+1 − Θ∞] dA = 0 (37)Aording to [7℄, the Lagrange multiplier is also onstant over the time step. Notethat this is also perfetly ompatible with the temperature approximation, beause theLagrange multiplier oinides with an entropy �ux.5.2 The ful�llment of time-disrete balane laws of ontinuum mehanisThe time disrete balane of linear momentum is obtained by δϕn+1(X) = c = const.,and takes the form
c ·

[∫

B0

[
∆p

∆t
− B 1

2

]

dV −

∫

∂T B0

T̄ 1

2
dA

]

︸ ︷︷ ︸Time disrete balane of linear momentum = 0 (38)Then, we hoose δϕn+1(X) = c ×
[
ϕn+1/2(X) − x0

] and δpn+1(X) = c × pn+1/2(X).The time-disrete balane of angular momentum is then given by
c ·

[∫

B0

[

ϕn+ 1

2
− x0

]

×

[
∆p

∆t
− B 1

2

]

dV −

∫

∂T B0

[

ϕn+ 1

2
− x0

]

× T̄ 1

2
dA

]

︸ ︷︷ ︸Time disrete balane of angular momentum = 0 (39)
9



Melanie Krüger, Mihael Groÿ and Peter BetshThe time disrete balane of entropy is obtained by the test funtion δΘn+1(X) = Θ∞ =
const., and takes the form

Θ∞

[∫

B0

[

∆s

∆t
−

Dtot
1

2

+ R 1

2

Θn+1

dV +

∫

∂ΘB0

λn+1 dA −

∫

∂QB0

Q̄ 1

2

Θn+1

dA

]

︸ ︷︷ ︸Time disrete entropy inequality priniple with Dtot
1

2

≥ 0

= 0 (40)
Now, we hoose δϕn+1(X) = ∆ϕ(X)/∆t and δpn+1(X) = ∆p(X)/∆t. In this way, weobtain the time disrete balane of mehanial energy

∆K

∆t
+

1

2

[

∆E

∆t

∣
∣
∣
∣
sn,Cin

+
∆E

∆t

∣
∣
∣
∣
sn+1,Cin+1

]

=

∫

B0

∆ϕ

∆t
· B 1

2
dV +

∫

∂T B0

∆ϕ

∆t
· T̄ 1

2
dA

︸ ︷︷ ︸Time disrete balane of mehanial energy (41)Then, by hoosing δΘn+1(X) = Θn+1(X), δsn+1(X) = ∆s(X)/∆t and δλn+1(X) =
λn+1(X), we arrive at the time disrete balane of thermal energy

1

2

[

∆E

∆t

∣
∣
∣
∣
Cn,Cin+1

+
∆E

∆t

∣
∣
∣
∣
Cn+1,Cin

+
∆E

∆t

∣
∣
∣
∣
Cn,sn

+
∆E

∆t

∣
∣
∣
∣
Cn+1,sn+1

]

=

∫

B0

R 1

2
dV − Θ∞

∫

∂ΘB0

λn+1 dA +

∫

∂QB0

Q̄ 1

2
dA

︸ ︷︷ ︸Time disrete balane of thermal energy (42)
The time disrete balane of total energy is again obtained simply by adding the timedisrete balane of mehanial and thermal energy. We arrive at the relation

∆H

∆t
=

∫

B0

[
∆ϕ

∆t
· B 1

2
+ R 1

2

]

dV +

∫

∂T B0

∆ϕ

∆t
· T̄ 1

2
dA − Θ∞

∫

∂ΘB0

λn+1 dA +

∫

∂QB0

Q̄ 1

2
dA

︸ ︷︷ ︸Time disrete balane of total energy (43)The time disrete Lyapunov balane is again obtained in two ways. First by hoosing
δΘn+1(X) = Θn+1(X)−Θ∞, δsn+1(X) = ∆s(X)/∆t, δλn+1(X) = λn+1(X) and addingthe time disrete balane of mehanial energy. Seond by subtrating the time disretebalanes of total energy and entropy, whih means

∆V

∆t
=

∆H

∆t
︸︷︷︸Time disrete balane of total energy− Θ∞

∫

B0

∆s

∆t
dV

︸ ︷︷ ︸Time disrete balane of entropy (44)whih also eliminates the Lagrange multiplier.10



Melanie Krüger, Mihael Groÿ and Peter Betsh6 NUMERICAL EXAMPLEAs numerial example, we onsider a dis, whih is bound between two plates (mehan-ial Dirihlet boundary ∂ϕB0), and partly uninsulated (thermal Dirihlet boundary
∂ΘB0 (see Fig. 6). The motion is initiated by an initial veloity �eld, and the heat on-dution is fored by the thermal Dirihlet boundary. For a small time step size, themidpoint rule and the ETC integrator ompute pratially the same results: The ringools down to ambient temperature. But for a large time step size, the midpoint rulereveals its limited stability region. The midpoint rule tends to hour-glassing in the dis-plaements and waves in the temperature distribution in the radial diretion. This isontrary to the ETC integrator.
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Figure 3: Rail-bound partly uninsulated dis.11



Melanie Krüger, Mihael Groÿ and Peter BetshREFERENCES[1℄ Stuart A. M. and Humphries A. R. Dynamial Systems and Numerial Analysis.Cambridge University Press, 1991.[2℄ Hairer E., Lubih C. and Wanner G. Geometri Numerial Integration. Springer-Verlag, 2006.[3℄ Gonzalez O. Design and Analysis of Conserving Integrators for Nonlinear Hamilto-nian Systems With Symmetry, Dissertation Stanford University, 1996.[4℄ Armero F. and Romero I. On the Formulation of High-frequeny Dissipative Time-Stepping Algorithmns for Nonlinear Dynamis. Part I. Comput. Methods Appl. Meh.Engrg., 190:2603�2649, 2001.[5℄ Marsden J.E. and West M. Disrete mehanis and variational integrators. AtaNumeria, pp. 357�514, 2001.[6℄ Romero I. Algorithms for oupled problems that preserve symmetries and the lawsof thermodynamis. Part I. Comput. Methods Appl. Meh. Engrg., 199:1841-1858,2010.[7℄ Betsh P. and Steinmann P. Conservation Properties of a Time FE Method. PartIII. Int. J. Numer. Methods Engng., 53:2271�2304, 2002.[8℄ Groÿ M. and Betsh P. Galerkin-based energy-momentum onsistent time-steppingalgorithms for lassial nonlinear thermo-dynamis. Math. and Comp. in Simulation,82 (4):718�770, 2011.[9℄ Bauhau O.A. and Bottasso C.L. On the design of energy preserving and deayingshemes for �exible nonlinear multi-body systems. Comput. Methods Appl. Meh.Engrg., 169:61�79, 1999.[10℄ Ober-Blöbaum S. and Saake N. Constrution and analysis of higher order Galerkinvariational integrators. arXiv:1304.1398 [math.NA℄, 2013.[11℄ Holzapfel G.A. Nonlinear Solid Mehanis. Wiley, Chihester, 2000.[12℄ Simo J.C. and Armero F. Geometrially Non-linear Enhaned Strain Mixed Methodsand the Method of Inompatible Modes. Int. J. Numer. Methods Engrg., 33:1413�1449, 1992.[13℄ Babuska I. The Finite Element Method with Lagrangian Multipliers. Numer. Math.,20:179�192, 1973.[14℄ Maugin G.A. and Kalpakides V.K. A Hamiltonian formulation for elastiity andthermoelastity. J. Phys. A: Math. Gen., 35:10775�10788, 2002.12


