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Abstract. Homogenization approaches have frequently been proposed to evaluate the
mechanical properties of highly heterogeneous structures. The determination of such ho-
mogenized or macroscopic properties is performed by solving a specific auxiliary problem
formulated on an elementary representative volume or a unit cell in the case of period-
ically heterogeneous materials. Once such properties have been determined, the initial
heterogeneous problem is substituted by an equivalent homogeneous one. If global elastic
computations using a quite limited number of homogenized moduli are straightforward,
this is not the case as regards strength properties. Homogenized yield design or limit
analysis computations require, indeed, a semi-analytical description of the homogenized
yield surface, simple enough to be efficiently used in an optimization solver.

The following work presents a combined homogenization/approximation approach to
perform global computations on periodically heterogeneous thin plates in bending. Ho-
mogenization theory in limit analysis or yield design [1, 2] is applied to a thin plate model
and macroscopic yield surfaces are derived by solving the auxiliary problem, by means of
thin plate finite elements and second-order cone programming.

An original approximation procedure [3] is used to express the so-obtained yield surface
as a convex hull of ellipsoids. This simple description enables to formulate yield design
problems on a homogenized structure very easily. In particular, a specific attention will
be devoted to the formulation of the corresponding static and kinematic approaches as
second-order cone programs as well.

An important feature of the method is that upper bound and lower bound status are
still preserved on the homogenized problems, so that arising approximation errors can be
safely estimated and controlled. Homogenized limit loads can then be bracketed with a
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relatively good accuracy. Numerical illustrative applications will be presented on various
types of structures like reinforced and perforated plates.

1 INTRODUCTION

Computing ultimate loads on heterogeneous structures can be very difficult to perform,
even with competitive numerical methods, due to the high degree of local refinement
needed to correctly capture the properties of the inhomogeneities. Homogenization theory
in yield design has, therefore, been developed to characterize the strength domain of an
equivalent homogeneous medium [1, 2].
Problem (1) represents a yield design problem on a given plate Ω made of a heterogeneous
material, the strength properties of which are described by a convex strength criterion G
depending on the point x ∈ Ω. The objective is to find the maximal loading factor λ of
a reference loading vector F such that there exists a bending moment field M statically
admissible (i.e. verifying equilibrium, continuity equations and boundary conditions) with
λF and satisfying the strength criterion at each point of the plate.

λhet = max λ
s.t. M(x) S.A. with λF

M(x) ∈ G(x) ∀x ∈ Ω
(1)

The principle of the homogenization theory is to replace the previous heterogeneous
problem by a similar problem (2) involving an equivalent homogeneous strength criterion
Ghom, with the idea that this problem would be much easier to solve.

λhom = max λ
s.t. M(x) S.A. with λF

M(x) ∈ Ghom ∀x ∈ Ω
(2)

In the following, only strength properties G(x) which vary in a periodic manner through-
out the structure will be considered. In this specific case, if a denotes the typical length
scale of the heterogeneities and L the typical length of the structure Ω, the main result
of homogenization theory states that, under appropriate mathematical assumptions and
a proper definition of Ghom, λhet → λhom when a/L→ 0.

2 DETERMINATION OF THE MACROSCOPIC STRENGTH CRITERION

The macroscopic strength criterion Ghom can be computed by solving an auxiliary
yield design problem formulated on the unit cell A. Such auxiliary problems are mainly
characterized by specific periodic boundary conditions for static and kinematic variables
as well as average relations linking microscopic quantities to macroscopic ones. In the case
of periodically heterogeneous thin plates in bending, the auxiliary yield design problem
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has been formulated in [4]. Let us just recall here the general definition of the macroscopic
strength criterion :

Ghom =
{
M | ∃m(ξ) ∈ SA(M), ∀ξ ∈ A m(ξ) ∈ G(ξ)

}
(3)

where m(ξ) is a microscopic bending moment field defined on the unit cell, G(ξ) is the
local heterogeneous bending strength criterion and where SA(M) denotes the set of micro-
scopic bending moment fields which are statically admissible with a macroscopic bending
moment M i.e. satisfying local equilibrium with zero body forces, continuity equations,

periodic boundary conditions and the average relation M =
1

|A|

∫
A
m(ξ)dA. The com-

plete definition of SA(M) can be found in [4].
Besides, by means of the virtual work principle, a dual definition can be given in terms
of the macroscopic support function Πhom as follows :

Πhom(χ) = sup
M∈Ghom

M : χ = inf
v∈KA0

1

|A|

(∫
A
π(χ+∇s∇v; ξ)dA+

∫
Γ

π

([[
∂v

∂n

]]
;n

)
dl

)
(4)

where χ is the macroscopic virtual curvature, v a periodic fluctuation of the transversal

virtual velocity field and π the support function of the heterogeneous local strength cri-
terion G(ξ) computed for the local curvature field χ+∇s∇v as well as for discontinuities

of the normal rotation [[∂v/∂n]] through a set of potential yield lines Γ.

Both formulations (3) and (4) are solved numerically using finite element discretization
techniques combined with conic programming as proposed in [4]. In particular, it is to
be noted that the numerical resolution of (3) yields a subset Gstat ⊆ Ghom the frontier
of which is determined by radial paths along prescribed macroscopic solicitations M .

Similarly, the numerical resolution of (4) yields a supset Gkin ⊇ Ghom the support function
of which is sampled for prescribed values of the macroscopic curvature χ lying on the

three-dimensional unit sphere.

3 APPROXIMATION PROCEDURE

SinceGstat andGkin have been numerically determined, it is impossible to solve problem
(2) exactly. Besides, in order to keep tractable computations on homogenized structures,
it is necessary to obtain a simple semi-analytical description of Gstat, Gkin with a few
parameters only. To this end, an inside approximation Gstat

app ⊆ Gstat ⊆ Ghom and an
outside approximation Gkin

app ⊇ Gkin ⊇ Ghom are constructed and used to solve yield
design problems on homogenized structures. Thus, problem (2) will be replaced by the
two following yield design problems :
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Figure 1: General principle of the combined homogenization/approximation procedure

λlb = max λ
s.t. M(x) S.A. with λF

M(x) ∈ Gstat
app ∀x ∈ Ω

(5)

λub = max λ
s.t. M(x) S.A. with λF

M(x) ∈ Gkin
app ∀x ∈ Ω

(6)

Due to the inside and outside approximation properties, we have : λlb ≤ λhom ≤ λub.
As a consequence, problem (5) will be used to formulate numerical lower bound static
approaches whereas problem (6) will be used for numerical upper bound kinematic ap-
proaches as illustrated in Figure 1.

The domain Gstat
app (resp. Gkin

app) is obtained by approximating Gstat (resp. Gkin) by a con-
vex hull of ellipsoids using the procedure described in [3, 5]. The geometrical parameters
of the ellipsoids are determined so as to obtain an inside (resp. outside) approximation.
Approximating the domain by a convex hull of ellipsoids offers the advantage of a great
accuracy with a limited number of parameters. Besides, the corresponding optimiza-
tion problems can be expressed using second-order cone constraints as shown in the next
section.

4 FEM FORMULATIONS OF STATIC AND KINEMATIC APPROACHES

4.1 Expression of the criterion using conic constraints

Let G = CH(Ei) be a convex hull of n ellipsoids Ei ⊆ R3 parametrized by a positive
semidefinite upper-triangular matrix Ji and a vector µi collecting the center coordinates
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such that :
Mi ∈ Ei ⇐⇒ ‖TJ−1

i (Mi − µi)‖ ≤ 1

Using the definition of the convex hull of a finite collection of sets, we have :

M ∈ G = CH(Ei)⇐⇒ ∃(Mi, ti) ∈ (R3 × R+)n such that

∣∣∣∣∣∣∣∣∣∣∣
M =

n∑
i=1

tiMi

n∑
i=1

ti = 1

Mi ∈ Ei ∀i = 1, . . . , n

Using the equation of the ellipsoids and introducing M̃i = Miti and ri =TJ−1
i (M̃i− tiµi),

the criterion can be rewritten :

M ∈ G = CH(Ei)⇐⇒ ∃(ri, ti) ∈ (R3 × R+)n such that

∣∣∣∣∣∣∣∣∣∣∣
M =

n∑
i=1

( TJiri + tiµi)

n∑
i=1

ti = 1

‖ri‖ ≤ ti ∀i = 1, . . . , n

It can be observed that M ∈ G is now expressed using 4 linear equality constraints and
n second-order cone constraints.

For kinematic approaches, the support function of the strength criterion has to be
computed. For a convex hull of ellipsoids, the support function πG(χ) is given by :

πG(χ) = max
i=1,...,n

πEi(χ) = max
i=1,...,n

{‖Jiχ‖+ Tµi · χ} (7)

4.2 Static approach formulation of the homogenized problem

Equilibrium finite elements are used to solve yield design static approaches on homoge-
nized structures. The plate is discretized by NE triangular elements assuming a quadratic
variation of the bending moment tensor and a linear variation of the shear vector inside
each element.
Let Σ be the vector of size 24NE collecting all mechanical degrees of freedom (3 com-
ponents of the bending moment at 3 vertices and 3 mid-nodes and 2 components of the
shear force at 3 vertices in one element). All local equilibrium, inter-element continuity
equations and boundary conditions are collected in H and the corresponding load vector
is noted F. The strength criterion is verified in each element at Nc checking points (due
to the quadratic variation of M it is not assured to be satisfied in a strict sense, but a
sufficient number of checking points (e.g. Nc = 10) has proved to be sufficient in practice).
Matrix N is used to express the bending moment at the checking points. The auxiliary
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variables are collected in vector s = T 〈t1 r1 . . . tp rp〉 where p = NE ×Nc × n. The static
approach of the homogenized problem can be written as the following second-order cone
program:

λlb,h = max λ
s.t. HΣ = λF

NΣ = Ks
Cs = 1
‖ri‖ ≤ ti i = 1, . . . , p

where K =

K̃ 0
. . .

0 K̃

, K̃ =


µ1

TJ1 0
. . . . . .

. . . . . .

0 µn
TJn

,

C =


n times︷ ︸︸ ︷

1 0 0 0 . . . 1 0 0 0 0
. . .

0

n times︷ ︸︸ ︷
1 0 0 0 . . . 1 0 0 0

.

Provided, if necessary, a post-processing step ensuring that the strength criterion is not
violated outside of the checking points, the finite element solution λlb,h of the previous
problem is, then, a lower bound of the exact limit load λlb corresponding to the homoge-
nized yield design problem (5) using a lower bound approximation of Ghom.

4.3 Kinematic approach formulation of the homogenized problem

A finite element formulation of the kinematic approach for a strength criterion ex-
pressed as a conic hull of ellipsoids has already been presented in [5]. The finite ele-
ments are non-conforming cubic triangular elements which authorize inter-element nor-
mal rotation discontinuities, so that the maximal resisting work is split into two terms
Prm = P curv

rm + P disc
rm describing, respectively, the contribution of curvature and rotation

discontinuities.

The curvature at a given Gauss point in an element can be expressed as χe = BeU, so
that the contribution of the curvature term to the maximum resisting work is obtained
after integration over all Gauss points of the structure :

P curv
rm =

q∑
e=1

ce max
i=1,...,n

{‖JiBeU‖+ Tµi ·BeU}

where q is the total number of Gauss points inside the structure and ce are constant terms
coming from the quadrature over the element.
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The contribution of inter-element rotation discontinuities to the maximum resisting
work, can be written as :

P disc
rm =

m∑
j=1

Π0j c̃j
∣∣Tθj ·U

∣∣
where m is the total number of Gauss points on all edges of the mesh, Π0j = πG(n⊗ n)
when n is the normal vector of the corresponding edge, θj is a vector such that Tθj ·U
computes the value of the rotation discontinuity through this edge and c̃j are constant
terms coming from the quadrature over the edge.

Finally, introducing different auxiliary variables, the upper bound kinematic problem
can be formulated as :

λub,h = min Tc · y +T c′ · s
s.t. TF ·U = 1

r = LU
‖rj‖ ≤ tj
we + PBeU ≤ ye
u = ΘU
|u| ≤ s

j = 1, ..., n× q
e = 1, ..., q

(8)

where L =

L̃B1 0
. . .

0 L̃Bq

, L̃ =

J1 0
. . .

0 Jn

, P =


Tµ1 0

. . .

0 Tµn

, t = T 〈w1 . . .wq〉,

Θ =


Tθ1

...
Tθm

 and Tc′ = 〈Π01c̃1 . . . Π0mc̃m〉.

This is a also a standard SOCP problem, the solution of which provides an upper bound
λub,h of the exact limit load λub corresponding to the homogenized yield design problem
(6) using an upper bound approximation of Ghom.

5 A priori error estimation

As the proposed homogenization/approximation procedure involves different approxi-
mation steps, it is useful to obtain an estimate of the final error made on the exact limit
load λhom.

Hence, the following different errors are defined :

• ε0 denotes the error made when solving discrete auxiliary problems. It is estimated
by measuring the relative distance between the sets Gstat and Gkin :

ε0 =
dH(Gstat, Gkin)

‖πGstat‖∞
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where ‖ · ‖∞ is the max-norm on the unit sphere and dH(·, ·) is the Hausdorff
distance.1

• εs(n) denotes the error made when approximating Gstat from the inside by a convex
hull of n ellipsoids. It is estimated similarly as before :

εs(n) =
dH(Gstat, Gstat

app )

‖πGstat‖∞

• εk(n) denotes the error made when approximating Gkin from the outside by a convex
hull of n ellipsoids :

εk(n) =
dH(Gkin, Gkin

app)

‖πGkin‖∞

The exact limit load λhom obtained with Ghom can then be bracketed by the following
estimation :

(1− ε0 − εs(n))λhom ≤ λlb ≤ λhom ≤ λub ≤ (1 + ε0 + εk(n))λhom

One has also to take into account the error made by the finite element approximations
when solving the homogenized problems introducing a new error εsh and εkh which depend
on the mesh size used by both approaches. Finally, the relative gap between the computed
lower and upper bound can be estimated by :

λub,h − λlb,h
λhom

≤ δ = ε0 + εs(n) + εk(n) + εsh + εkh

6 ILLUSTRATIVE APPLICATIONS

6.1 Reinforced rectangular plates

The first example is concerned with plates consisting of a matrix obeying the von
Mises criterion with an ultimate bending moment mp1 = 1 reinforced by a straight band
of reinforcing material obeying the same criterion with an ultimate bending moment
mp2 = 40. The relative area of the reinforcing material is fixed to 5%. The unit cell, along
with the mesh used to solve the auxiliary problem, is represented in Figure 2(a). The error
made when solving discrete auxiliary problems has been estimated to ε0 = 2.22%. Both
domains Gstat and Gkin have then been approximated using a convex hull of n = 10, 30
and 50 ellipsoids, the corresponding errors are given in Table 1.

Four different yield design problems have been considered : a square plate of side
length a = b = 1 and a rectangular plate of side lengths a = 1, b = 1.5 are subjected

1The Hausdorff distance between two convex sets A and B can be defined using their support functions
as dH(A,B) = max

d∈S
|πA(d)− πB(d)| = ‖πA − πB‖∞.

8



Jeremy Bleyer and Patrick de Buhan

(a) The unit cell and its mesh

unit cell

(b) The rectangular plate problem

Figure 2: A reinforced plate problem

Errors εs(n) εk(n)

10 ell. 17.43% 17.99%
30 ell. 5.20% 4.51%
50 ell. 3.09% 2.45%

Table 1: Table of errors induced by the approximation

to a uniformly distributed pressure q. The plate edges are, in both cases, either simply
supported or fully clamped. The limit load q is estimated, for the four problems, for
different values of the reinforcement orientation angle θ with respect to the plate smallest
edge direction (see Figure 2(b)). The limit load obtained for an unreinforced plate is
denoted by q0.
The error induced by the finite element discretization on the global structure computation
has been estimated by solving simply supported and clamped problems on the different
geometries with a homogeneous von Mises criterion. It has been found that εsh + εkh ≈
0.3% for simply supported problems and εsh + εkh ≈ 1.3% for clamped problems for both
geometries. Finally, for 50 ellipsoids, the following estimates of the relative gap δ have
been obtained :

• δ ≈ 8% for simply supported problems

• δ ≈ 9% for clamped problems

Figures 3 and 4 represent the obtained lower and upper bound estimates of λhom = q/q0

for the different problems, varying reinforcement orientations and different degrees of
approximation. The gray zone represents the estimated relative gap zone of width δ and
centered on the average between the best lower bound and upper bound estimates. The
Reuss lower bound (q = q0) obtained when replacing the heterogeneous material by the
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(a) Simple supports (b) Clamped supports

Figure 3: Square plate (a = b = 1) problems

(a) Simple supports (b) Clamped supports

Figure 4: Rectangular plate (a = 1, b = 1.5) problems

weakest material and the Voigt upper bound (q = 〈mp〉q0) obtained by using the average
of the ultimate bending moment are represented for information.
One can observe that the lower and upper bounds are very close from each other and that
the best estimates obtained with 50 ellipsoids fall within the estimated relative gap zone.
Despite the anisotropy of the considered problem, the accuracy of the obtained bounds
do not seem to depend on this anisotropy.

6.2 Slotted circular plate

The second example concerns a circular plate perforated by elongated holes with round
edges disposed in staggered rows, a pattern frequently encountered in perforated metal
sheets (Figure 5(a)). The porosity is η = 0.26. The plate is loaded by a uniformly
distributed pressure and is simply supported. Due to the pattern symmetry, only a
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(a) Heterogeneous problem, unit cell and macro-
scopic strength criterion

(b) Approximated criterion and homogenized
problem

Figure 5: Homogenization/approximation procedure for the slotted circular plate problem

(a) Optimal velocity field (red corresponds
to zero values and blue to the highest ones)

(b) Principal directions of the curvature field and as-
sociated microscopic collapse mechanisms

Figure 6: Optimal kinematic fields for the slotted circular plate problem

quarter of the plate has been modeled in the homogenized computation (Figure 5(b)).
As before, the macroscopic strength criterion has been approximated using up to 50

ellipsoids (see Figure 5(b) for the approximating surface). The ultimate pressure q nor-
malized by the one obtained for a non-perforated plate times the porosity ηq0 has been
bracketed as : 0.496 ≤ q/ηq0 ≤ 0.511.
Finally, the optimal transversal velocity field obtained by the kinematic approach has
been represented in Figure 6(a). The principal directions of the associated curvature field
have been represented in Figure 6(b). One can clearly observe the anisotropy induced by
the hole pattern since the solution is no more axisymmetric. Besides, it is also possible
to plot the microscopic collapse mechanisms of the unit cell corresponding to a particular
value of the curvature at a given region of the plate. For clarity, the periodic fluctuations
have been magnified compared to the global curvature strain. One can observe that the
collapse mechanisms are quite different with respect to the corresponding macroscopic
curvatures.
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7 Conclusion

A combined homogenization/approximation method has been proposed for evaluating
ultimate loads on periodically heterogeneous structures using the tools of yield design or
limit analysis theory. Starting from the formulation of an auxiliary yield design prob-
lem on the unit cell, numerical estimates of the macroscopic yield surface are computed
from a finite element resolution of the corresponding static and kinematic approaches.
Semi-analytical approximations of such surfaces using a convex hull of ellipsoids are then
derived to obtain a simple and accurate mathematical description using conic constraints.
These surfaces are then used in the finite element computation at the macroscopic level
on the homogenized structure, the corresponding optimization problems being formulated
as second-order cone programs.
One specific aspect of the approach is that, at each step of the procedure, a specific atten-
tion is devoted to the conservation of the bounding status of the different computations,
the yield surfaces used in the static (resp. kinematic) approach being always lower (resp.
upper) bound approximations of the exact one. This enables to keep the bounding status
on the macroscopic computation. It is even possible to obtain very good estimates of the
relative gap between the corresponding lower and upper bound estimates of the homoge-
nized ultimate load.
This method has been illustrated on periodic heterogeneous thin plates in bending but
the general principle can be applied to any mechanical model, although the main bottle-
neck will probably be the dimension of the considered yield surfaces (e.g. dimension 6 for
anisotropic 3D continua).
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