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Summary. A numerical limit analysis methodology is adopted to predict the load-carrying 
capacity of steel reinforced concrete beams. The methodology, based on iterative elastic 
analyses, is here refined and implemented through a two-yield-criteria formulation where 
post-elastic behaviour of both concrete and reinforcement bars is taken into account. The 
effectiveness of the methodology is shown by the analysis of reinforced concrete beams.  
 
 
1 INTRODUCTION 

Although plain concrete is not a ductile material, reinforced concrete (RC) can exhibit, 
when loaded up to failure, considerable ductility injected by the presence of reinforcement 
bars (re-bars). The typical failure mode of properly designed so-called under-reinforced 
elements subjected to bending, in fact, initiates by yielding of the steel re-bars followed, with 
the load increasing, by crushing of concrete in compression zone. This is, actually, a failure 
mode regarded as ductile and normally assured by a reinforcement ratio below the balanced 
ratio. Obviously, in these cases steel re-bars play a significant role in determining the post-
elastic behaviour of the RC element. 

In this contribution, a numerical methodology, founded on the limit analysis theory and 
aimed at the evaluation of the load-carrying capacity of steel-reinforced concrete elements, is 
applied. This finite element-based (FE-based) methodology, promoted by the authors to 
predict the limit state solution of RC elements (see [1], [2]), allows the determination of an 
upper and a lower bound to the peak load of the RC structural elements and gives some useful 
indications on the expected failure mechanism. In the quoted papers the methodology has 
been performed by adopting a Menétrey–Willam-type (M–W-type) yield criterion [3] 
endowed with cap in compression for concrete, and by postulating an indefinitely elastic 
behaviour of steel re-bars, which is acceptable in over-reinforced concrete elements. 
However, a more consistent approach, surely more suitable for under-reinforced beams, 
should simultaneously take into account both the post-elastic behaviour of concrete and the 
actual contribution of yielded re-bars to the post-elastic behaviour of the structural element as 
a whole. To this aim, the above numerical methodology is here refined and implemented 
within a two-yield-criteria formulation, where concrete is governed by the Menétrey–Willam-
type yield criterion and steel bars are handled by a von Mises criterion, so enabling the 
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prediction of possible steel bars yielding at incipient collapse. In order to validate the 
effectiveness and reliability of the promoted approach, a comparison is made between 
numerical predictions and experimental findings on large-scale beams tested in laboratory 
[4]–[6]. 

2 FUNDAMENTALS OF THE NUMERICAL LIMIT ANALYSIS METHODOLOGY 
The constitutive assumptions together with the key ideas of the numerical methodology are 

here outlined. For the sake of brevity, only a few basic concepts are given; more detailed 
information can be found in [1], [2].  

As said, the limit analysis methodology gives the peak load multiplier of the analyzed RC 
beams by detecting an upper and a lower bound to it. Since concrete is viewed as a 
nonstandard material, a nonstandard limit analysis approach is adopted. According to this 
approach, the yield surface of the nonstandard material is encircled with two surfaces, 
precisely an outer and an inner surface, and two bounds are then computed with reference to 
such surfaces (or materials). Concrete is assumed to comply with a M–W-type yield criterion 
[3] with cap in compression, which plays itself the double role of inner and outer surface in 
the static and kinematic nonstandard limit analysis approach [7]. A traditional (standard) limit 
analysis approach with von Mises yield surface is instead adopted for steel re-bars.  

The methodology consists of two limit analysis numerical procedures, namely the Linear 
Matching Method (LMM) and the Elastic Compensation Method (ECM). Both the 
procedures, originally conceived for von Mises type materials (see [8], [9]), have also been 
successfully applied by the authors, within a wider research program, in the context of 
composite laminates ([10]–[14]). The application to RC elements with fiber reinforced 
polymer (FRP) bars has also been investigated in [15]. Following a kinematic approach of 
limit analysis, the LMM is aimed at constructing a collapse mechanism for the evaluation of 
an upper bound PUB to the collapse load of the analyzed elements. It is an iterative procedure 
involving one sequence of linear FE-based analyses in which the studied structure is assumed 
made of a fictitious material with spatially varying moduli. At each iteration the fictitious 
moduli are adjusted so that the computed fictitious stresses are brought onto the yield surface 
at a fixed strain rate distribution so defining a collapse mechanism, i.e. strain and 
displacement rates together with the associated stresses at yield. By applying the upper bound 
theorem of the limit analysis theory a PUB load multiplier can then be computed. Following a 
static approach of limit analysis, the ECM attempts to construct an admissible stress field 
suitable for the evaluation of a lower bound PLB to the collapse load. It is an iterative 
procedure involving many sequences of linear FE-based analyses in which highly loaded 
regions of the structure are systematically weakened by the reduction of the local modulus of 
elasticity (“redistribution procedure”) in order to simulate the effects of inelasticity.  

A noteworthy refinement of the methodology compared to the one proposed in [1], [2] is 
that the above mentioned concepts are taken into consideration for both concrete and steel re-
bars with reference to the two adopted yield criteria. As shown next, this significantly 
improves the effectiveness of the procedures and the accuracy of the obtained numerical 
results. 
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3 NUMERICAL RESULTS 
The proposed approach was tested on 7 RC beams that were numerically simulated to 

predict peak load and collapse mechanism. Details concerning laboratory test equipment, 
reinforcement arrangement and experimental results for the analyzed RC beams can be found 
in [4]–[6]. 

The elastic analyses have been carried out using the FE-code ADINA [16] with meshes of 
isoparametric and displacement-based 3D-solid 8-nodes elements with 2x2x2 GPs per 
element for modeling concrete and 2-nodes 1-GP truss elements for steel re-bars and stirrups. 
A perfect bond between concrete and re-bars is assumed in the FE-analyses. An isotropic 
material formulation has been employed for concrete and re-bars, so only two material 
constants are used to define the constitutive relations, namely the Young modulus E and the 
Poisson ratio ν. To set both the Menétrey–Willam-type and the von Mises yield surfaces, the 
material strength properties (compressive and tensile strength for concrete, 'cf , 'tf , and yield 
strength for longitudinal steel re-bars, fy ) have been assumed as indicated in the experimental 
campaigns (see again [4]–[6]) and are not reported here for the sake of brevity.  

In particular, among the 7 beams numerically analyzed, specimen labelled A3 was tested at 
the University of Toronto by Vecchio and Shim [6] and was here taken into consideration to 
highlight the better performance of the proposed two-yield-criterion approach compared to 
that presented in [1]. In the latter paper the same RC beams were, in fact, analyzed but re-bars 
were modelled as indefinitely elastic members. Among the 12 Toronto beams, the above 
beam A3 experienced in facts a pronounced yielding of tension reinforcement unlike the other 
RC specimens in which yielding of re-bars was not detected at ultimate/failure conditions. By 
assuming re-bars to have an indefinitely elastic behaviour, the corresponding numerical result 
concerning beam A3 was rather poor in terms of peak load prediction (see [1]). As shown 
below, a significantly better performance of the proposed (refined) approach has been 
attained. The second group of specimens analyzed was that presented by Lau and Pam [4]. 12 
hybrid FRP RC beams (with both FRP and steel re-bars) were tested in three point bending 
(simply supported). Three out of the twelve tested beams (namely specimens labelled MD1.3-
A90, MD2.1-A90, T0.2-A135) were reinforced with steel re-bars only and failed by crushing 
of concrete in compression and yielding of steel re-bars in tension occurring almost 
simultaneously. Moreover, these three beams were designed as under-reinforced specimens so 
as to promote yielding of steel re-bars at ultimate states and increase flexural ductility. The 
ductility ratio of these three beams, computed as the ratio of midspan displacement at ultimate 
stage (Δu) and at yield stage (Δy), was in fact by far higher than that of the other hybrid FRP 
RC specimens. All the experimental conditions match quite well the assumptions of the 
proposed two-yield-criterion limit analysis approach and this is why these three beams have 
been numerically analyzed here. Finally, 16 RC continuous beams strengthened with different 
arrangement of internal steel re-bars and external CFRP laminates were tested by Ashour et 
al. [5]. The beams were classified into three groups according to the amount of internal steel 
reinforcement. Each group included one un-strengthened control beam designed to fail in 
flexure (namely specimens labelled H1, S1, E1). Conventional ductile flexural failure due to 
yielding of the internal tensile steel reinforcement followed by concrete crushing at both the 
central support and midspan sections occurred for the three control beams, with large ductility 
ratio. The remaining 13 strengthened RC beams with CFRP laminates presented by Ashour et 
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al. [5] are outside the scope of this paper, therefore they are excluded in the present analysis. 

 

Figure 1: Mechanical model of simply-supported beams A3, MD1.3-A90, MD2.1-A90, T0.2-A135  

 

Figure 2: Mechanical model of continuous-supported beams H1, S1, E1  

As shown in Figure 1, the simply-supported beams (specimens A3, MD1.3-A90, MD2.1-
A90, T0.2-A135) were subjected to a concentrate load at midspan totPP  with P denoting the 
load multiplier and totP , assumed equal to 100kN for all the tested beams, the reference load. 
Due to the symmetry of the problem only half specimen has been analyzed and this by setting 

z
x

y

roller support

/2b 0zu =

0xu =

/2totPP

0L

h

/ 2L
rocker support
at beam center

z
x

y

0zu =

totPP

/2b

0L

h

L



Dario De Domenico, Aurora A. Pisano and Paolo Fuschi. 

 5 

zero displacements in z direction to the FE-nodes lying on the shaded symmetry plane shown 
in Figure 1. The continuous-supported beams (specimens H1, S1, E1), which comprised two 
equal spans, were similarly subjected to two concentrate loads /totPP 2  at the two midspans. 
In this case, only a quarter of the beam has been modelled exploiting the symmetry in both x 
and z directions, as shown in Figure 2, in order to guarantee an accurate FE elastic solution 
without increasing the computational effort considerably. Details concerning geometrical data 
and reinforcement arrangement of all the 7 analyzed RC beams are given in Table 1.  

Table 1: Geometrical data and reinforcement arrangement of the tested RC beams 

 geometric properties   reinforcement arrangement 
Specimen 
label b (mm) h(mm) L (mm) L0 (mm)  top  

re-bars 
bottom  
re-bars stirrups 

A3 305 552 6840 6400  3 M10 4 M30, 2 M25 D4@168mm 
MD1.3-A90 280 380 4600 4200  2 R6 4 MD20 R8@100mma 
MD2.1-A190 280 380 4600 4200  2 R6 4 MD25 R8@100mma 
T0.2-A135 280 380 4600 4200  2 R6 2 T12 R8@100mma 
H1 150 250 8500 3830  2 T8 2 T20 R6@100mm 
S1 150 250 8500 3830  2 T20 2 T8 R6@100mm 
E1 150 250 8500 3830  2 T16 2 T16 R6@100mm 
a R8@50mm near the support (see Lau and Pam [4]). 

With regard to the FE model adopted, the number of finite elements is different for each 
specimen and has been chosen after a preliminary mesh sensitivity study to assure an accurate 
FE elastic solution. For the 7 analyzed RC beams the number of 3D-solid elements ranges 
from 840 to 984, while that of truss elements from 376 to 738.  

To point out the improvements achieved by using the proposed two-yield-criterion limit 
analysis approach compared to the one with indefinitely elastic behaviour of steel re-bars (i.e. 
the numerical formulation presented in [1] and [2]), the upper and lower bounds to the peak 
load multiplier obtained by means of the LMM and the ECM, respectively, were also 
computed keeping the bars in the elastic field (i.e. via the previous approach adopted in [1], 
[2]).  

Figures 3a–g show, for the analyzed specimens, the plots of the upper and the lower 
bounds to the peak load multiplier versus the iteration number. As shown, only a few 
iterations/linear FE-elastic analyses (generally less than fifteen) are sufficient to obtain a 
converged solution in terms of both upper and lower bounds. The monotonic and rapid 
convergence is assured by a sufficient condition given by Ponter et al. [17] fulfilled by the 
assumed M–W-type and von Mises yield surfaces. In Figures 3a–g also the values of the 
upper and lower bounds obtained by using the previous approach (PUB_eb and PLB_eb values) 
are depicted for the sake of comparison. 

In Table 2 the relative errors between all the computed bounds are reported with sign, 
comparing the numerical results with the experimental findings. Normally, the upper bound 
values are expected to have a positive relative error and the lower bound values a negative 
one. 
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Figure 3: Values of the upper and lower bounds to the peak load multiplier versus iteration number obtained by 
the proposed two-yield-criteria approach (solid lines with blue markers) and keeping bars elastic (dashed lines 
with red markers) compared to the collapse experimental threshold, dashed lines  
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Figure 3 (continued) 

Table 2: Relative errors of the numerically predicted peak multipliers for the analyzed RC beams 

  Relative error (%) 
Specimen designation   PUB PLB PUB_eb PLB_eb 
A3   5.23 -3.62 24.92 7.10a 
MD1.3-A90   8.76 -6.59 21.73 11.58a 
MD2.1-A190   6.73 -5.57 13.45 1.47a 
T0.2-A135   7.71 -12.46 16.11 -7.22 
H1   1.60 -5.30 8.52 -4.93 
S1   9.04 -5.92 18.09 -9.58 
E1   1.22 -6.51 11.14 3.21a 
a wrong prediction (PLB_eb > PEXP) 

By analyzing the numerical results, the proposed limit analysis procedure seems to be quite 
accurate in defining two close limits to the real—experimentally obtained—peak load value 
for almost all the examined RC beams. In detail, the upper bound values predicted by the 
LMM are always above the experimental ones as it should be when searching for an upper 
bound. As can be seen in Table 2, with regard to the upper bound values a significantly better 
performance is obtained by the proposed two-yield-criteria approach (PUB values) compared 
to the previous one (PUB_eb values). It is worth noting that also the relative errors concerning 
the upper bounds reduced significantly by using the proposed refined formulation (relative 
errors always less than 10%) and are more than halved in all the analyzed RC beams so 
witnessing a noteworthy improvement. Also with regard to the lower bound values obtained 
by the ECM a significant better performance of the refined formulation (PLB values) compared 
to the previous one (PLB_eb values) is observed. The relative errors concerning the PLB values 
are less than 10% in all but one specimens (RC beam T0.2-A135). Moreover, it should be 
pointed out that in three out of seven specimens the lower bound predictions of the previous 
approach (PLB_eb values) were incorrect as they exceeded the value of the experimental load 
multiplier PEXP, which is unacceptable for a reliable lower bound value.  

It is worth mentioning that some useful indications on the expected failure mode of the 
analyzed RC beams could also be obtained by identifying the plastic zones (collapse 
mechanism) at last converged solution of the LMM and this simply by plotting the strain rates 
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in the deformed configuration on the beam loaded by UB totP P  at last iteration of the LMM. 
Such plots are not reported for sake of brevity. 

4 CONCLUSIONS 
A limit analysis methodology, already presented in [1] and [2] and successfully applied to 

RC elements, has been here modified and refined to include the possibility of modeling 
yielding of steel re-bars at incipient collapse that often occurs especially in under-reinforced 
RC beams. This more consistent approach results in a better predictive performance especially 
for those RC beams in which yielding of re-bars is more marked in the experimental tests. 
Operationally, the use of the two-yield-criteria formulation compared to that presented in [1] 
does not entail any significant increase in computational cost. The main difference is that the 
iterative updating of the elastic moduli, carried out within both the LMM and the ECM, has to 
be referred to two distinct materials, i.e. concrete and steel, by considering two distinct yield 
surfaces. In this regard, it is worth noting that accounting for the yielding in steel re-bars with 
reference to the von Mises yield surface reduces to an (iterative) updating of the elastic 
moduli of the bars depending on the ratio of the yield strength and the elastic stress in the 
truss bars elements. The obtained results, at least for the examined cases, seem to prove the 
effectiveness of the presented enhanced limit analysis approach. 
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