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Abstract. In this paper we examine problem of predictive maintenance in complex
technical systems. We propose two approaches for anticipation of rare events (typically
faults): 1) degradation detection and trending, and 2) failure discrimination based on
classification techniques. The applicability of the approaches is illustrated on the real-
world test cases from aircraft operations based on the data granted by AIRBUS.

1 INTRODUCTION

In recent years the concept of predictive maintenance in complex technical systems is
gaining popularity. It is designed to help determine the condition of in-service equipment
in order to predict when maintenance should be performed. This approach promises cost
savings over routine or time-based preventive maintenance, because actions are performed
only when warranted. To the date there exist several successful application of the concept
in the different areas of technology including US navy cost reduction for maintenance [1],
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increase of safety and reliability of distributed power systems [2, 3] and automated search
for faults in power systems [4]. In this study we examine problem of the effective aircraft
maintenance in operation.

Aircraft is a complex systems with tens of interacting subsystems and thousands of
underlying parts. Naturally, as an aircraft life progresses, these parts are exposed to
different types of stress which, eventually, originate faults, i.e. abnormal conditions, or
non-permitted deviations regarding some fundamental properties of the components.

Sometimes faults lead to failures, i.e. the permanent interruption of the aircraft’s ability
to perform some required functions under specified operating conditions, and therefore
the maintenance appears as a fundamental activity to preserve aircraft operability.

From a maintenance standpoint, the first approach to preserve this aircraft operability
is to perform scheduled activities, such as structural inspections or electronic tests. This
is when unscheduled maintenance activities take place, aiming at restoring, as quickly
as possible, some aircraft functions. Usually the cost of this unpredicted maintenance is
problematic and heavy, and such events have to be avoided as best as possible.

To try to decrease these unscheduled costs, AIRBUS is interested by predictive mainte-
nance concept as a methodology of failure anticipation and warning monitoring function
to decide whether a operability-related failure is present in the aircraft before a fault
actually occurs.

Predictive maintenance for aircrafts involves data collection, handling and processing.
In this paper we describe two approaches for aircraft failure anticipation illustrating them
applied to two ‘prove-of-the-concept’ examples from real aircraft operations. The goal of
the ongoing project in Airbus is to develop a full support automated system for the early
warnings for possible costly faults.

In order to build up such a system several problems should be considered. The first
is a multidimensional data trending to be able to trace the known degradation processes.
And the second is a problem of rare event prediction to be able to anticipate some specific
families of faults.

Classical statistical approaches are ineffective for low frequency and high consequence
events because of their rarity. In this paper we try to adapt existing approaches for rare
event prediction.

2 RARE EVENTS ANTICIPATION PROBLEM STATEMENT

From mathematical point of view the rare event anticipation problem can be formu-
lated in the following way [5]. We observe in real time (with some frequency, possibly
not uniform) starting from moment T multivariate time series of system performance pa-
rameters Xt ∈ Rd, t > T . The time series before moment T are also known, i.e. we have
also a historical data set D = {Xt}Tt=1. The task is to predict the new events Yt ∈ [0, 1]1,
t > T , where Yt is an indicator of event occurrence at moment t.

1Here Yt = 1 means that event happened at moment t and Yt = 0 – event did not happen.
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Based on information available two possible problem statements are considered:

1. Unsupervised case. Only the set of parametersXt is considered at each moment of
time t and we try to detect that system state has changed and correlate that possible
changes to Yt. In this case we build up some statistical model using historical data
set {Xt}Tt=1 and given new observations of Xt, t > T we check if they expose the
same statistical properties as those in historical period and obtain probabilities of
‘abnormal’ behavior pt. Given the particular threshold on probability, ν ∈ [0, 1], one
can calibrate the final prediction: Ft = I{pt > ν}2 – ‘abnormality’ flag for moment
t > T .

2. Supervised case. Both Xt and Yt are considered and we try to predict directly Yt
based on previous history of Xt and Yt, t < T . In this case we have the historical
data set {Xt, Yt}Tt=1 and build the predictive model

f : Xt−l−h, Xt−l+1−h . . . , Xt−h → [0, 1],

where l is a lag in history and h is a prediction horizon, i.e. the number of time mo-
ments ahead we try to predict the event. Given new observations, Xt, t > T , we pre-
dict: a) probability of events with the model pt = f(Xt−h, Xt−h−1, . . . , Xt−h−l), t >
T ; and b) flag of early warning Ft = I{pt > ν}, given the threshold value ν ∈ (0, 1).

2.1 SOLUTION QUALITY METRICS

To measure the quality of the prediction we consider the following metric: accuracy of
prediction of failure event on particular moment of time (flight, day, week, etc.), i.e. each
moment of time we have a prediction of failure (or probability of failure) and we need to
assess the accuracy. If Yt = Ft than the prediction is correct, otherwise not.

The possible outcomes of the prediction are summarized in the Table 1. And the
requirement on predictive algorithm is to minimize the level of Type II errors (false alarms)
while given the reasonable prediction of failure events.

2.1.1 Precision-recall curve

The well-known classification quality metrics, receiver operating characteristics (or
simply ROC curve), is not applicable in our case due to rarity of one class – events. It
gives quite optimistic and misleading representation of false alarms as the number of non-
event states marked as corresponding to events (see e.g. [7]). Even if we have only 1% of
such false alarms, in absolute values it could be comparable to the number of events itself
and not feasible.

2Hereinafter notation I{bool} is an indicator of boolean condition bool, i.e. I{bool} = 1 if bool holds
and I{bool} = 0 otherwise.
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Condition
No Failure Failure

P
re

d
ic

ti
on

Failure
Type I error
False positive

Correct outcome
True positive

Precision =∑
True positive /∑
Predicted Failure

No
Failure

Correct outcome
True negative

Type II error
False negative

Negative predicted =∑
True negative /∑

Predicted No Failure
Specificity =∑

True negative /∑
No Failure

Sensitivity =∑
True positive /∑

Failure
Accuracy

Table 1: Classification error definitions.

A precision-recall curve is much more applicable in our case [7]. It is another graphical
plot which illustrates the performance of a binary classifier system as its discrimination
threshold ν is varied. But compared to the ROC it is more useful in the case when
one class has very limited number of examples (e.g. failure events are quite rare). It is
created by plotting the fraction of true positives out of the total actual positives, precision
of classifier, vs. the fraction of true positives out of all positive answers of classifier which
is called recall.

Using the curve one can decide which algorithm is more suitable for the particular
classification task and also choose the optimal threshold ν∗ based on the cost-benefit
analysis, i.e. fix the false alarm rate to get the corresponding precision or vice versa.
That is how the user of the tool can finally control over false alarm and precision trade-
off.

3 PROPOSED APPROACHES

We distinguish two types of problems described below: degradation detection and fault
prediction. The first step in both approaches is accurate selection of features describing
the system behavior (see the next subsection for details).

3.1 PHASE SPACE NOTATION

In order to define correct mathematical terms for analysis one should define the so
called phase space of the problem. This terms should represent the most important
features of the system that expected to be the subjects of some change preceding the
failure events. This step is done just after the selection of particular physical parameters
to observe. There is no generic procedure for construction of phase space because it is
problem specific and relies on the physical knowledge. But there exist several generic
approaches, including
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• Usage of raw parameter values. In case of no additional physical information or the
parameters describe the system in the best way.

• Calculation of first differences. In some cases it is more important to look not at the
absolute values of some parameters but at the empirical derivative of the process,
i.e. the first differences. For a given parameter time series xt, t = 1, . . . , T , the series
of first differences is defined as x̃0 = 0, x̃t = xt− xt−1 for t = 2, . . . , T . Consider the
case of degradation when the absolute level of the parameter is not much important
but the crucial feature is a sequential decrease in parameter value corresponding to
some kind of ‘leakage’.

• Calculation of some statistical properties like second moment (variance), third mo-
ment (kurtosis), etc. These features could be representative in case of complex but
not obvious changes in the system.

• Correlation analysis. In some cases the most important feature of the data is its
temporal correlation. For two time series xt and zt for t = 1, . . . , T , the temporal
correlation is defined as

Corr(xt, zt) =

∑T
t=1(xt − x)(zt − z)√∑T

t=1(xt − x)2
∑T

t=1(zt − z)2
,

where x is an average value of corresponding parameter x. Consider, e.g., the case
when one part of the system is expected to be broken and loose its connection to
the other parts which are supposed to operate in normal way.

• Dimensionality reduction [8, 9]. Sometimes it is not obvious which parameters or
combination of parameters are the most important for the system. In such cases one
can use a generic dimensionality reduction techniques both to reduce the number of
parameters to analyze and to detect the most important ones from the statistical
point of view.

3.2 DEGRADATION DETECTION AND TRENDING

This approach covers simple cases when we know which parameters are involved in
multidimensional degradation process (e.g. leakage, increasing pressure due to filter clog-
ging, etc.) and we know the threshold of degradation before it becomes critical. In this
case, we propose to build up a statistical model of ‘normal’ behavior and then apply it
to the the new-coming data. In case degradation (‘abnormal’ behavior) is detected, the
next step is to predict time before the fault. From mathematical point of view we are in
unsupervised problem statement (see section 2).
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3.2.1 Degradation detection

For detection of degradation we use One-class Support Vector Machine [10]. This
method is extensively used for novelty detection and basically separates all the data points
from the origin (in feature space) with a hyperplane and maximizes the distance from this
hyperplane to the origin. This results in a binary function which captures regions in the
input space where the probability density of the data lives. Thus the function returns 0
in a ‘small’ region (capturing the training data points) and 1 elsewhere (anomalies).

The quadratic programming minimization function in this case:

min
w,ξi,ρ

1

2
‖w‖2 +

1

νT

T∑
i=1

ξi − ρ, such that

(w, φ(xi)) ≥ ρ− ξi, i = 1, . . . , T

ξi ≥ 0, i = 1, . . . , T

In this formula parameter ν characterizes the solution:

• it sets an upper bound on the fraction of outliers (training examples regarded out-
of-class) and,

• it is a lower bound on the number of training examples used as Support Vector.

Due to the importance of this parameter, this approach is often referred to as ν-SVM.

3.2.2 Degradation trending

For the modeling of multidimensional degradation behavior in time we employ Au-
toregressive Integrated Moving Average (ARIMA) model [11], that can be viewed as a
‘cascade’ of two models. The first is non-stationary drift:

Yt = (1− L)dXt,

where L is a lag operator, i.e. LkXt = Xt−k; while the second is wide-sense stationary:(
1−

p∑
i=1

φiL
i

)
Yt =

(
1 +

q∑
i=1

θiL
i

)
εt,

where φi are the parameters of the autoregressive part of the model, θi are the parameters
of the moving average part and εt are error terms. The error terms εt are generally assumed
to be independent, identically distributed variables sampled from a normal distribution
with zero mean.
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3.3 DISCRIMINATION OF FAILURES

We propose to use two-class classification models in order to perform discrimination of
parameter values corresponding to the event states (faults). From mathematical point of
view we are in supervised problem statement (see section 2).

Logistic Regression is a popular and robust linear classification method. It’s predictor
function consists of a transformed linear combination of explanatory variables. In this
model a probability of output Y to take the value k ∈ {0, 1} has the form:

p(Y = k|X, θ) =
exp(θTkX)∑
j exp(θTj X)

.

To fit this model we need to optimize the conditional log-likelihood:

`(θ,D) =
∑
t

log p(y = yt|Xt, θ).

Typically some method like conjugate gradients can be used then to maximize log-
likelihood.

In case of rare events one class in the history set is represented by very small number
of examples and classifier that always predicts non-event will have a good average error
equal to the percent of non-events. So in this case we need to perform a kind of set
balancing [12].

3.3.1 Parameter Selection

Figure 1: Parameter selection illustration.

Consider an example of events
in a two-parameter system de-
scribed on the figure 1. The
red circles represent parameter
value combinations corresponding
to events while green – to ordinal
behavior of the system. In order
to discriminate events and ordi-
nal behavior one can construct a
complex discrimination curve (or
surface in general), like the blue
one on the figure, or rather sim-
ple linear rule, in yellow color on
the figure) which does the same
job. One can next notice that im-
pact of the second parameter in
the linear rule is small compared
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to those of the first parameter and actually events could be discriminated by the first
parameter only (green line).

This idea lies in the core of parameter selection procedure which is based on regularized
Logistic Regression model where likelihood is penalized by additional term:

`∗(θ) = `(θ) + λJ(θ),

where J(θ) =
∑

k αkψ(θk), αk ≥ 0, ψ(θk) ≥ 0.
Usually the penalty function ψ is chosen to be symmetric and increasing on [0,+∞].

Over-fitting often tends to occur when the fitted model has many feature variables with
relatively large weights in magnitude. To prevent this situation we can use weight decay
method (or ridge regression). Let J(θ) =

∑
k θ

2
k (or `2). The result of using such a

function J(θ) is classifier with smaller values of weights and often better generalization
ability. We can also prune this classifier: weights with magnitudes smaller than some
certain threshold can be considered redundant and removed.

However, `2 usually leaves most of the weights θk non-zero that can be a problem
when we have a lot of features and want to get sparse θ-vector. It can be also a native
characteristic of our data, when we have a large amount of features, but only relatively
small number of them is sufficient to learn the target concept. So, let J(θ) =

∑
k |θk|

(or `1). In this case a lot of weights can become zero thus giving a model with relatively
sparse vector θ.

4 REAL WORLD CASES

To prove the proposed methodology we examined two anonymized real-world cases from
aircraft operational performance area granted by AIRBUS. The first case is an application
of multidimensional degradation trending for the detection and prediction of leakage-like
behavior in an aircraft cooling systemSecond case is an anticipation of some group of
typical failures in an aircraft subsystem that happen with frequency 0.2-1%.

4.1 LEAKAGE DETECTION AND TRENDING

The leakage-like degradation process could be considered as a pathway to the failure
event so that maintenance (change of equipment or replenishment of some liquid) should
be planned when degradation comes to some threshold level. The main task here is to
detect the abnormal behavior of the system (leakage) and then to predict time left before
the predefined level is achieved, i.e. plan the maintenance actions.

Based on several examples of normal-behaved aircrafts we trained a one-class SVM
model and applied it to the out-of-sample aircraft with (see figure 2a) and without (see
figure 2b) degradation. The detection of anomaly (degradation process) was performed on
the first differences of the corresponding time series, assuming that in case of degradation
the subsequent differences expose unusual behavior.

For the prediction of degradation behavior in time we used ARIMA modeling (see
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figure 2c) separately for each aircraft. That approach allows to accurately predict number
of flights left before the maintenance event is actually needed, i.e. plan the maintenance
in advance.

4.2 PREDICTION OF RARE EVENTS BASED ON CLASSIFICATION

Figure 4: Precision-recall curves for proposed
approach and simple parameter thresholding
for different horizons of prediction

For the case of prediction of specific fail-
ures we used the parameter selection ap-
proach based on regularized Logistic Re-
gression model (see section 3.3.1). Subse-
quently eliminating parameters, we ended
up with one parameter only.

The selection of best history lag was
done by performance assessment on sep-
arate validation set (based on area un-
der corresponding precision-recall curves).
The final prediction is done by construct-
ing statistical model based on the selected
parameters (see section 3.3). Example of
failure prediction along with the selected
parameter is shown on figure 3.

To evaluate the predictive ability and
performance of the approach we compared
it to simple thresholding (the warning of

event is raised when the level of curve is below some predefined value) and obtained
the precision-recall curves depicted on figure 4 for different horizons of prediction. Our
approach significantly outperforms simple thresholding.

5 CONCLUSIONS

- We have proposed two purely data-driven approaches of fault prediction: 1) degra-
dation detection and trending, and 2) rare event anticipation.

- With proposed approaches we have covered some set of possible aircraft equipment
failures and illustrated them by the two real data cases.

- The project is going on and in the next steps we are going to cover more possible
cases of failure events and expand the overall methodology.
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Figure 2: Detection of degradation and trend prediction
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Figure 3: Parameter behavior in time with real and predicted failures
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