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Abstract. Mathematical density-based topology optimization methods commonly re-
quire analytical sensitivity information. In this paper we propose a heuristic approach
for topology optimization, targeting the optimization of objective functions for which an-
alytical sensitivities are not available or difficult to obtain. Concretely, sensitivities are
substituted by the prediction of a regression model, which is trained based on sampled
sensitivity data. This information is obtained from finite differencing, combined with the
assumption that local state features, associated with each design variable, are suitable for
predicting the corresponding sensitivity. In order to evaluate the proposed method and
in order to compare the results to a known optimal baseline solution, it is applied to the
problem of optimizing a minimum compliance cantilever. In most experiments, optimized
designs similar to the baseline design are obtained, while the number of finite element
solver runs is reduced drastically compared to pure finite differencing gradient estima-
tion. As solution quality and the number of required samples depend on the prediction
quality, we provide recommendations for the choice of model and features based on the
conducted experiments.

1 INTRODUCTION

The target of topology optimization is to find concepts for the design of mechanical
structures, i.e. to find the optimal distribution of material within a design space, in order
to provide the basic layout and shape of the structure. Various approaches to topology op-
timization exist [7]. Among these, density-based methods [4] are widely used. In density-
based methods, a finite element mesh discretization of the design space is represented by a
continuous density variable for each element. The problem of identifying elements which
should contain material and those that should contain void can be efficiently solved with
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gradient-based approaches using rigorously derived analytical sensitivities of the design
variables.

However, in practical engineering optimization problems gradient information can be
difficult to obtain. Examples are topology optimization of crashworthiness designs or
structures consisting of complex materials like composites. In such cases non-gradient ap-
proaches or finite difference gradient estimations may be used, however these methods are
usually considered computationally too expensive due to the typically high dimensionality
of topology optimization problems. Therefore, in this paper we propose a method which
generates a heuristic substitute for analytical sensitivities, which can be used instead.

The proposed approach is based on the observation that the sensitivity of a design
variable is usually computed by using state information related to the finite element
to which it is associated. This is true for the minimum compliance problem, since the
sensitivity can be computed (for a constant elemental stiffness matrix) from elemental
displacements and elemental density. Other examples are the problem of eigenvalue max-
imization, thermal conductivity maximization or compliant mechanism synthesis [4], for
which the sensitivities are as well computed based on the state of the element.

Furthermore in the literature approaches exist, that utilize heuristic criteria based
on which the design is optimized instead of rigorously derived sensitivities. In [3] the
stress within an element is used as criterion to perform biologically inspired topology
optimization. In the bi-directional evolutionary structural optimization [10] a sensitivity
number is used as criterion to discretely remove or add material in elements. Another
approach [11], aims for topology optimization of structures subject to crash loads. It
utilizes the elemental internal energy density as criterion based on which material is
distributed in order to achieve a uniform energy distribution.

Mathematically rigorous and heuristic approaches have in common that the criterion
for material distribution is defined prior to the optimization, with respect to the considered
objective function.

So far, there exist almost no approaches with the ability to generically devise a heuristic
criterion which can be used for topology optimization instead a pre-defined one. An excep-
tion is [2] in which a neural network approximation model is optimized by an evolutionary
search algorithm. The purpose of the model is to process elemental state information in
order to provide an update signal for each element, which can be used as a substitute for
sensitivity information. The process was shown to provide feasible structures, even for
using weak features. However, the approach involves a very high computational cost and
the resulting designs show a large variance.

In this paper, we propose an approach in which the sensitivity of a design variable is
explicitly sampled using finite differencing and a sensitivity model is learned directly on
these data. In order to perform a statistical evaluation and in order to compare the results
to a well established baseline, we apply the new method in the context of the minimum
compliance problem.

Section 2, is a reminder of the density-based topology optimization with respect to the
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minimum compliance problem. Section 3 introduces the topology optimization based on
predicting sensitivities. Experiments and obtained results are described in Section 4, and
the paper is concluded in Section 5.

2 MINIMUM COMPLIANCE TOPOLOGY OPTIMIZATION

The minimum compliance problem is frequently used as a benchmark problem for
topology optimization, therefore density-based topology optimization is briefly introduced
in the context of the minimum compliance problem.

In density-based topology optimization [4] each element i = 1, . . . , N of the discretized
design space is represented by a variable. This binary problem can be relaxed by utilizing
a material interpolation scheme like the solid isotropic material with penalization (SIMP)
method. In case of a minimum compliance problem the Young’s modulus E0 of the
material within a mesh element is interpolated according to

Ei(ρi) = ρpiE0, (1)

with the design variable ρi ∈ [ρmin, 1], a penalization p and a minimum density ρmin.
The minimum compliance problem can be formulated as [4]:

min
ρ

c(ρ) = uT f

s.t. : K(ρ)u = f ,

V (ρ) = Vf ,

0 < ρmin ≤ ρi ≤ 1, i = 1, . . . , N,

(2)

with the compliance c, the global displacement vector u, the forces vector f , and the
global stiffness matrix K. A volume constraint Vf is imposed, specifying the proportion
of design space which is filled with material.

The problem can be solved by a standard optimality criteria method (OC-update).
A heuristic update scheme that redistributes material among the design variables and
maintains the volume constraint is [4]:

ρnewi =





max(ρmin, ρi −m)
if ρiB

η
i ≤ max(ρmin, ρi −m),

min(1, ρi +m)
if min(1, ρi +m) ≤ ρiB

η
i ,

ρiB
η
i else,

(3)

with the move-limit m, damping coefficient η, and Bi = ∂c
∂ρi

/Λ, with the assumption
that every element has a unit volume. The multiplier Λ is determined by a bi-sectioning
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algorithm, which tunes the design update such that the volume constraint holds. In
conventional approaches to topology optimization an analytical formulation of the adjoint
sensitivity ∂c

∂ρi
is assumed to be known. While this is true for the minimum compliance

problem this is not true in the general case. Since the compliance problem only serves
as a test problem for the general case, we assume ∂c

∂ρi
to be unknown. In that case the

sensitivity may be estimated using a finite differencing approach as:

∂c

∂ρi
≈

∆c

∆ρ
=

c(ρ+∆ρi)− c(ρ)

∆ρ
, (4)

with the vector elements ∆ρij of ∆ρi for j = 1, . . . , N and

∆ρij =

{
0 if i 6= j,
∆ρ if i = j,

(5)

with a small ∆ρ > 0.
A problem regularization can be imposed for example by filtering of sensitivities [12]:

∂̂c

∂ρi
=

1

ρi
∑

j∈Ni
Hij

∑

j∈Ni

Hijρi
∂c

∂ρi
(6)

where Ni is the set of elements whose center lies within the radius rmin around the center
of element i. Hij is defined as

Hij = rmin − dist(i, j) (7)

where dist(i, j) is the center to center distance of elements i and j. Filtering of sensitivities
imposes a minimum length scale and prevents checker-board patterns.

3 TOPOLOGY OPTIMIZATION BY PREDICTING SENSITIVITIES

The required number of finite element analysis simulations per iteration, when using
gradient-estimation via finite differencing as in (4) is N+1. In a typical topology optimiza-
tion application, however, the number of design variables easily reaches tens of thousands
up to millions. In such a case the computational cost for estimating the gradient in this
way is infeasibly high.

In this section we propose a heuristic alternative to computing finite differences for
all design variables. We assume that the sensitivity of element i can be modeled by a
predictor Sθ(si):

∂c

∂ρi
≈ Sθ(si), (8)

with the feature vector si and the model parameters θ. We term the approach “Topology
Optimization by Predicting Sensitivities”(TOPS). It assumes that there exist features si
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which contain information on the sensitivity of element i. The mapping from the features
to the sensitivity substitute needs to be learned by a machine learning approach. The
choice and availability of features depends on the problem. In topology optimization, the
governing equation needs to be solved. In the case of the minimum compliance problem
this is achieved by a finite element analysis. The solution of the analysis is the state of
the structure, which for a (displacement-based) finite element solver is given by the nodal
displacements. Therefore the elemental displacement vector ui of the nodes defining an
element are naturally the basic features available for learning the model. Another basic
information on the element is the design variable itself, i.e. the material density ρi of the
element. A basic feature vector for element i can therefore be defined as si = [uT

i ρi]
T .

Depending on the objective function and the type of analysis, different features might be
available. Naturally we would expect that the features are based on the local state of the
element to which the design variable is associated, therefore we use the designation Local
State Features (LSF), in accordance with [2].

In order to train a predictor, training data is required. After conducting the finite
element analysis the LSF vector si is available for all elements, respectively design variables
i = 1, . . . , N . A training sample for the model output can be obtained by computing
the sensitivity from finite differencing in (4) for a single design variable i, yielding a

sensitivity sample
(
si,

∆c
∆ρ

)
. A set of training samples can be obtained by repeating this

for a number of design variables. This data set can be used to train the regression
model, which can predict the sensitivities based on the LSF for other design variables.
Since the computational cost for training a model and predicting sensitivities for the
remaining design variables is usually much smaller than that for performing finite element
analysis simulations for all of the remaining variables, this is a more efficient approach
than estimating the gradient by pure finite differencing.

Based on this idea we propose the TOPS algorithm. The design is initialized with
an initial guess, for example a homogenous distribution of material and a finite element
analysis is performed. The model parameters are initialized with zero and the database
is empty. The following steps are iterated:

1. The sensitivity with respect to the objective function and the current design is
estimated separately for a random subset of size Ns of the design variables by
performing a finite difference step as in eq. (4). No design variable is sampled
more than once for the same current design. The sampled sensitivities and the
corresponding features are stored in the database.

2. The parameters of a new regression model are trained with a learning algorithm,
based on the samples in the database.

3. Sensitivities are predicted for all design variables which were not sampled by finite
differencing in step 1.
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Figure 1: Comparison of the computational flow for topology optimization using pure finite difference
gradient estimation (left) and topology optimization by predicting sensitivities (right).

4. The predicted sensitivities are filtered and the OC update is applied.

5. The quality of the new design candidate is assessed by a finite element analysis.

6. If the design is accepted, the design candidate becomes the current design and the
algorithm continues in step 3. Otherwise the design candidate is rejected and either
the design is converged and the algorithm terminates, or additional samples are
taken for the current design, i.e. the algorithm continues in step 1.

In the following detailed information is provided on step 6 of the algorithm:

Check a) A design candidate is accepted and becomes the current design, if its percental
improvement over the current design is equal or larger than the improvement rate
fr. Otherwise continue with check b).

Check b) If less than Nsreq samples have been taken for the current design, the design
candidate is rejected and additional sensitivity samples are collected. Otherwise fr
is reduced according to fnew

r = max(0.5 · fr, frmin
), with a minimum improvement

rate frmin
. However, fr is at maximum reduced once per design iteration. The design

candidate is accepted and becomes the new current design if its quality is satisfying
the new improvement rate, otherwise it is rejected again and it is continued with
the check in c).
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?

Figure 2: The design space with boundary conditions and the baseline design obtained by finite difference
gradient estimation.

Check c) If the maximum number of samples Nsmax
which can be taken per design iter-

ation has not been reached, additional sensitivity samples are collected. Otherwise
the algorithm terminates.

This slightly complicated convergence scheme is due to the fact that the optimal choice
for Ns is unknown. In step 1 a fixed number of the design variables is sampled and added
to the database. Iteratively, the algorithm updates the design and in case of failure the
sampling step is repeated, so that only the minimum amount of samples for acceptance
are required and the total number of finite element solver runs is kept low. However,
when the design is not improving, this can either be caused by an actual convergence of
the design or by insufficient quality of the predictions. Therefore, a limit Nsmax

on the
maximum amount of samples that can be taken is provided. Furthermore, it may happen
that weak predictions still result in a marginal improvement of the design. In order to
avoid this case fr is specified, maintaining a higher quality of the predictions. As the
optimization proceeds, the achievable improvement decreases and so fr is reduced after
Nsreq samples have been taken.

The computational flow for TOPS as well as for a baseline with pure finite differencing
is depicted in Fig. 1.

4 EXPERIMENTS

4.1 Setup

In order to do a statistical evaluation of TOPS, the algorithm is applied to a 2-
dimensional minimum compliance cantilever design problem. The minimum compliance
problem is chosen in order to evaluate TOPS with respect to a well established baseline.
In our implementation the efficient solver from [1] is used. The design space is discretized
into N = 45 × 28 = 1260 quadratic elements with a size of 1mm × 1mm. The following
parameters are set: load f = 1N, target volume fraction Vf = 0.4, Young’s modulus
E0 = 1N/mm2, Poisson’s ratio ν = 0.3, penalization p = 3, filter radius rmin = 2.1mm. A
baseline solution is obtained by gradient estimation via pure finite differencing, without
sensitivity model. The design space with boundary conditions and the optimized baseline
design are depicted in Fig. 2.

We evaluate TOPS for two different regression models [5], respectively sensitivity pre-
dictors. First, a linear regression is considered in order to test the hypothesis of linear
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relations between LSF and the sensitivity. In order to avoid over fitting, a quadratic
regularization term is added to the ordinary least squares problem of linear regression
(termed ridge regression [8]). Secondly, a support vector regression (SVR) [13] as a state
of the art nonlinear predictor is applied. The implementation is using the libsvm [6] and
the recommendations from [9] are followed.

Both predictors are evaluated for several LSF sets. As explained in Sec. 3 we designate
the elemental displacement vector and the density as basic LSF. This feature set represents
a minimum amount of previous knowledge about the problem. In order to improve the
performance of the linear regression often higher order features are constructed from
the basic ones by multiplication of features with each other. Accordingly it is possible
to construct second, third and fourth order features from the basic LSF. The SVR is
intrinsically able to model nonlinear relations and is therefore only trained in combination
with the linear versions of the basic LSF.

For the minimum compliance problem another LSF which can be used is the elemental
strain energy, which is defined as:

Wi = xp
iu

T
i k0ui. (9)

This feature represents previous knowledge on the problem, as it contains direct knowl-
edge on the material constants and the elemental stiffness matrix k0, as well as indirect
knowledge by selecting this feature over other physical information on the element, like
e.g. strains or stresses.

We chose to sample Ns = 50 samples in each sampling step. For the convergence
parameters we chose fr = 0.05, frmin

= 0.001, Nsreq = 250, Nsmax
= 500. Additionally,

samples of the last 8 designs which have been sampled are remembered, samples older
than that are neglected. All TOPS variants are started for 30 different random seeds
in order to account for the stochastic nature of the sampling step. Two measures for
evaluating TOPS are considered, the median compliance of the resulting optimized design
copt/mJ and the computational cost measured by the median number of finite element
analysis simulations, which were required NFEA, compared to NFEA,Base for the baseline.
Additionally the resulting designs can be visually compared to the baseline design in Fig.
2.

4.2 Results TOPS: Linear Regression

The result of TOPS can be seen in Tab. 1. The designs resulting from TOPS with linear
regression are depicted in Fig. 3. For the linear regression predictor, a trend of improving
quality can be observed when using higher order variants of the basic LSF. For the basic
features the linear model is not able to model the sensitivities appropriately resulting
in a sub-optimal solution, which can be seen in Fig. 3. Even though a high number of
samples is taken the linear mapping is not sufficient. Adding second, third and forth order
terms of the basic LSF improves the compliance and reduces the required number of finite
element analysis simulations. These features imply a multi-variate polynomial model in
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copt
mJ

(± std) NFEA

1000
(±std) NFEA

NFEA,Base
(±std)

TOPS Linear Regression
Basic LSF 61.44(±1.54) 15.85(±4.04) 0.63(±0.16)
Basic LSF, 2nd Order 59.19(±1.25) 7.35(±2.41) 0.29(±0.10)
Basic LSF, 3rd Order 56.56(±1.32) 3.03(±0.80) 0.12(±0.03)
Basic LSF, 4th Order 56.50(±1.80) 3.09(±0.70) 0.12(±0.03)
Energy LSF 56.78(±1.14) 0.67(±0.38) 0.03(±0.02)
Energy and Basic LSF 55.05(±0.38) 2.62(±0.69) 0.10(±0.03)

TOPS Support Vector Regression
Basic LSF 56.66(±21.26) 6.75(±2.29) 0.27(±0.09)
Energy LSF 56.14(±0.46) 2.06(±0.49) 0.08(±0.02)
Energy and Basic LSF 56.36(±0.90) 0.62(±0.19) 0.02(±0.01)

Baseline 55.52(±0.00) 25.22(±0.00) 1.00(±0.00)

Table 1: Results for TOPS with different predictors and sets of LSF from restarting each variant for 30
different random seeds.

the basic LSF with degree, two, three and four, which is able to much better approximate
the sensitivity function. Compared to the baseline only 12% of the FEA simulations are
required for third and fourth order LSF. The higher the order of the basic LSF that are
used, the better the resemblance between the optimized design and the baseline.

Using the energy LSF Wi has a high impact on the results. The lowest compliance
in the whole study is achieved when using the energy and basic LSF in combination
with linear regression. This corresponds to the case where all considered information
is available. Comparing this case to the case of only basic LSF it is obvious that the
energy feature is very descriptive. Furthermore the lowest NFEA for the linear regression
predictor is achieved when only the energy is used as LSF. The lack of information causes
the result to be less accurate, however the training of the models requires less samples,
since with only one strong feature the linear relation between energy and sensitivity is
easily learned. In numbers only 3% of FEA,Base is required. In case the energy is included
as LSF, the designs are very similar to the baseline.

4.3 Results TOPS: SVR

Tab. 1 also contains the results for TOPS with SVR predictor. The corresponding
optimized designs can be seen in Fig. 4.

When considering the results of TOPS with SVR in terms of compliance, all feature
sets perform similar. This is also reflected in the visual resemblance of the optimized
designs to each other and to the baseline design. Although the energy LSF contains much
more information on the sensitivity the same information is also contained in the basic
LSF. However, SVR is able to learn the required non-linear relation. This comes with
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56.5 55.056.8

Basic LSF Basic LSF, 2nd Order Basic LSF, 3rd Order

Energy LSFBasic LSF, 4th Order Energy and Basic LSF

Figure 3: TOPS designs for linear regression as predictor with different LSF sets. For each set the opti-
mized design from the run which converged closest to the median compliance is shown and its compliance
/mJ is indicated next to it.

56.456.156.7

Energy LSFBasic LSF Energy and Basic LSF

Figure 4: TOPS designs for SVR as predictor with different LSF sets. For each set the optimized
design from the run which converged closest to the median compliance is shown and its compliance /mJ
is indicated next to it.

a higher number of samples required for the optimization with only basic LSF, but still
requires about 73% fewer FEA simulations than the baseline optimization. The overall
cheapest approach of this study in terms of FEA simulations is TOPS with SVR and
energy as well as basic LSF, which requires only 2.4% of the samples required by the
baseline, i.e. the number of samples is reduced from 25220 to 620.

4.4 Discussion

From the results it can be seen that predictor and LSF have to be chosen carefully.
The lowest compliance was achieved for linear regression with energy and basic LSF. The
smallest amount of samples was required in case of the SVR for the same features.

Results can be interpreted when considering the analytical sensitivities. For our prob-
lem these are:

∂c

∂xi

= −pxp−1
i uT

i k0ui, (10)

The true sensitivity is obviously strongly correlated with the strain energy in (9). This
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explains why including the energy has such a high impact on the compliance for the linear
regression as well as on the number of FEA simulations for the SVR. For the minimum
compliance problem, using the elemental strain energy as a LSF is effectively an example
for using analytical or semi-analytical gradient information.

Furthermore (10) reveals that for a constant stiffness matrix the analytical sensitivity
(and p = 3) is a multivariate polynomial of degree 4. This explains why a linear regression
with second, third or fourth order is improving the results substantially.

The energy is a strong and intuitive feature, and also higher order basic LSF are, by
judging from (10), suited for modeling the minimum compliance sensitivity. For general
problems no strong features, previous knowledge or intuition might be available. However,
even in this case, TOPS with a SVR and only basic LSF yields a solution very similar to
the baseline, with 73% less FEA simulations, since it is able to learn a suitable non-linear
relation. The 6750 FEA simulation in this case seem still to be a high cost. However,
since the sensitivity function is the same for all elements, it is intuitive to expect that
the absolute number of samples required for learning will not rise with an increased mesh
size, a hypothesis that needs to be validated by future research.

The results suggest that in general it is advisable to use a non-linear predictor like
SVR and to include all LSF that might be relevant. If expert knowledge or intuition on
the type of non-linearity is available this could be used to chose or construct additional
LSF, like higher order versions of the basic LSF. In this case a linear regression might
be more efficient than a non-linear model. Furthermore, any analytical or semi-analytical
information can (and should) be easily utilized by TOPS.

5 CONCLUSIONS

The proposed algorithm is a novel heuristic for topology optimization, which substi-
tutes analytical sensitivity information by a regression model. Sets of training data for
a design are obtained by sampling finite differences for a subset of the design variables
until the model quality is sufficient. The method is targeting problems for which analyt-
ical sensitivity information on the design variables is not available or difficult to obtain.
However, in order to perform a statistical analysis the method was evaluated on the min-
imum compliance problem. Even for minimal previous problem knowledge, TOPS was
demonstrated to provide designs close to the baseline, whereby best results for minimum
previous knowledge were obtained when using a nonlinear SVR model. Including previous
knowledge or intuition about the problem in the form of stronger LSF was demonstrated
to improve the solution quality and reduce the number of solver runs.

REFERENCES

[1] E. Andreassen, A. Clausen, M. Schevenels, B. Lazarov, and O. Sigmund. Efficient
topology optimization in matlab using 88 lines of code. Structural and Multidisci-
plinary Optimization, 43(1):1–16, 2011.

11



Nikola Aulig, Markus Olhofer

[2] N. Aulig and M. Olhofer. Neuro-evolutionary topology optimization of structures
by utilizing local state features. To appear in Proceedings of the Genetic and Evolu-
tionary Computation Conference Companion, GECCO’14, Vancouver, BC, Canada,
July 2014. ACM 2014.

[3] A. Baumgartner, L. Harzheim, and C. Mattheck. SKO (soft kill option): the biolog-
ical way to find an optimum structure topology. International Journal of Fatigue,
14(6):387 – 393, 1992.

[4] M. Bendsøe and O. Sigmund. Topology Optimization Theory, Methods and Applica-
tions. Springer Verlag Berlin, 2nd edition, 2004.

[5] C.M. Bishop. Pattern recognition and machine learning. Springer, 2006.

[6] C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[7] J. Deaton and R. Grandhi. A survey of structural and multidisciplinary continuum
topology optimization: post 2000. Structural and Multidisciplinary Optimization,
49(1):1–38, 2014.

[8] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for nonorthog-
onal problems. Technometrics, 12:55–67, 1970.

[9] C.-W. Hsu, C.-C. Chang, and C.-J. Lin. A practical guide to support vector classi-
fication. Technical report, Department of Computer Science and Information Engi-
neering, National Taiwan University, Taipei 106, Taiwan, 2003.

[10] X. Huang and Y. Xie. Evolutionary Topology Optimization of continuum structures.
John Wiley & Sons, 2012.

[11] N. M. Patel, B.-S. Kang, J. E. Renaud, and A. Tovar. Crashworthiness design using
topology optimization. Journal of Mechanical Design, 131:061013, 2009.

[12] O. Sigmund. Morphology-based black and white filters for topology optimization.
Structural and Multidisciplinary Optimization, 33(4-5):401–424, 2007.

[13] V. Vapnik, S. E. Golowich, and A. J. Smola. Support vector method for function
approximation, regression estimation and signal processing. In Advances in Neural
Information Processing Systems 9 — Proceedings of the 1996 Neural Information
Processing Systems Conference (NIPS 1996), pages 281–287, Dever, CO, USA, De-
cember 1997. MIT Press, Cambridge, MA, USA.

12


