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Abstract. A composite comprised of small particles distributed in a host matrix can
be prescribed effective electromagnetic properties (εeff, neff, etc.) in the long wavelength
limit. The effective properties are functions of the constituent material properties, volume
fraction of the particles and also the shape of the particles. By optimizing the particle
shape and tapping into the plasmonic resonance at the particle/matrix interface, we design
composites with near-zero permittivity and very low loss at optical frequencies.

(a) εeff = 3.13 + 0.02i (b) εeff = −2.05 + 1.11i

Figure 1: Small silver particles in a dielectric background, illuminated with light at 500
THz. The local electric potential field, as well as the effective permittivity εeff of the
composite, is greatly influenced by particle shape.
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1 INTRODUCTION

In recent years, there has been great interest in the design and manufacture of compos-
ites which possess specific electromagnetic properties. This is largely due to the experi-
mental demonstration of a composite possessing negative refractive index in 2000 [1, 2].
This seminal work confirmed that judicious choice of the topology within a composite
could result in that composite having effective material properties much different to those
of its constituents. These so-called metamaterials have since been proposed for such
extraordinary devices as the invisibility cloak [3] and artificial black hole [4].

The electromagnetic properties we are typically interested in controlling are the electric
permittivity ε and magnetic permeability µ. Note that both are typically complex-valued
and are functions of the frequency of light with which the material is interacting. A
special class of materials, called Epsilon-Near-Zero (ENZ) materials, have been shown to
be capable of producing a number of interesting phenomena, such as waveguides which
maintain efficiency even in the presence of sharp corners [5] antennas with extremely
high directivity [6], electromagnetic tunnelling [7] and even total reflection/transmission
(a type of perfect cloaking) under some conditions [8, 9]. As the name suggests, ENZ
materials are those with electric permittivity ε ≈ 0.

(a) Metal inclusion in vacuum (b) Metal inclusion in ENZ material

Figure 2: Light incident on an arbitrarily-shaped metal object produces a large degree of
scattering (left). When the same object is submerged in a matched ENZ material, the
incoming light waves are transmitted and remain planar; the object is invisible (right).

It is therefore desirable for us to attain materials which have ENZ behaviour. It
is known that some single-phase (i.e. non-composite) materials, such as LiF and KCl,
exhibit ENZ over part of the frequency spectrum [10, 11]. These polaritonic materials
suffer two drawbacks: the frequency at which ENZ behaviour occurs cannot be changed,
and the energy losses associated with using a specific material cannot be reduced. Thus,
using a single-phase material to produce ENZ behaviour is possible in some sense, but in
order to achieve prescribed/tunable ENZ behaviour (at a specific frequency and with a
certain degree of loss), it seems we must explore other options.

The metamaterials research field has demonstrated one way of producing tunable ENZ
behaviour- that is to induce electric resonance within a composite typically comprised of
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a dielectric matrix and inclusions with dimensions comparable to the incident wavelength
of light. The electric resonance stems from either large induced currents (in the case
of conductor/wire inclusions) [12] or from Mie scattering effects (in the case of spheroid
inclusions) [13]. This method of producing ENZ behaviour has some problems, namely the
bandwidth over which ENZ behaviour is attained may be too narrow to admit practical
application, and the losses associated with these types of resonance may be very high.
The interested reader is directed to the studies [14, 15, 16], which are optimization studies
related to this type induced current/Mie resonance composite.

An alternate route to ENZ behaviour is via very small particles distributed in a host
matrix (Figure 3a). If the particle and host materials have opposite signs of permittivity
(such as silver and glass), local field enhancements refered to as plasmonic resonance can
develop at the material interfaces. This type of resonance remains present in the long
wavelength limit, and so exotic behaviour can be achieved for any wavelength which is
sufficiently larger than the inclusions.

There has been extensive work devoted to the forward-problem of calculating the ef-
fective permittivity of these particle/matrix composites, given the constituent materials
and particle topology. For simple sphere and ellipsoid particles, we have the classical
Maxwell-Garnett and Bruggeman theories [17, 18]. More recently, a numerical technique
for predicting the effective permittivity for arbitrary shapes was proposed [19] and used
to analyse a number of complicated particle topologies including n-gons and Sierpinski
shapes [20]. To the authors’ knowledge, though, optimization of particle shape in order
to obtain ENZ material behaviour has not yet been explored.

In the remainder of this paper, we will show that ENZ behaviour can indeed be in-
duced in the long wavelength limit by optimizing the shape of the particle inclusions. We
begin by detailing the procedure required to determine the effective properties of a parti-
cle/matrix composite. We continue by describing our chosen optimization algorithm. We
conclude by applying the technique to silver particles distributed in a dielectric matrix,
and also vice-versa.

(a) Composite comprised of small particles em-
bedded in a host matrix (b) Model for the determination of εeff

Figure 3: The behaviour of a particle/matrix composite as a whole can be determined
from analysis of a single particle.
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2 EFFECTIVE PROPERTIES FOR ARBITRARILY-SHAPED PARTICLES

In the long wavelength limit, the effective permittivity εeff of a matrix/particle compos-
ite can be retrieved via electrostatic analysis of a single particle, using the following [19]:

εeff =
1

a∆u∆u∗

∫
Ω1∪Ω2

ε∇u · ∇u∗ .dV (1a)

so that

∇ · (εi∇u) = 0 in Ωi (1b)

u = u1 on ΓD1 (1c)

u = u0 on ΓD0 (1d)

∇u · n = 0 on ΓN (1e)

(ε∇u1 − ε2∇u2)n2 = 0 on ∂Ω1 ∩ ∂Ω2 (1f)

In the above, u is the potential field (voltage) and the geometry is as shown in figure
3b. ∆u = u1 − u0 and a is the side length of the analysis cube.

Obviously, if the particle topology is non-symmetric, the effective properties may have
to be evaluated for each of the x, y, z directions, and εeff becomes a tensor. In this work, we
will analyse two-dimensional particles and constrain the designs to be double-symmetric.
Thus, the scalar form of εeff is valid.

For our constituent materials, we choose silver, for which the properties are well known
in the optical spectrum [21], and a simple dielectric with εdi = 2.3, which is common in the
literature. We arbitrarily nominate to undertake our optimization studies assuming an
incident light frequency of 500 THz (mid-optical spectrum), where the silver permittivity
is in the order of εAg = −14.0 + 0.8i. Since our assumptions require the composite
inclusions to be much smaller than the incident wavelength, it is implied that inclusions
our inclusions must have dimensions in the nanometre range.

3 SHAPE OPTIMIZATION

As discussed earlier, this research is targeting ENZ materials. Recalling that εeff is
generally complex-valued, we want both the real and imaginary parts to be as close to
zero as possible. Accordingly, the objective function J : Ω→ < we choose is:

J = (εeff ε
∗
eff)1/2 (2)

We have now set the stage for our optimization problem. We aim to determine the
particle shape such that we obtain the desired effective medium properties, which are
evaluated via equations (1) and (2).

There are a number of topology optimization techniques available for the above class
of problem. The SIMP method [22], popular in structural mechanics, was deemed less
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suited to this problem, since the electric field ∇u (along with any topological sensitivity
information) tends to vanish inside metals (Ω2). The level set method [23] was also con-
sidered, however the shape derivative on ∂Ω is awkward to evaluate for the discontinuous
∇u field at the interfaces. Also since the problem is resonant in nature, any gradient-
based method can be unstable and/or tend to direct designs in the opposite direction to
the optima (see, for example [15]).

For the above reasons, we decided to parametrize the geometry and use a non-gradient
optimization method. The so-called Superformula, first proposed by Gielis [24], is an
extension to the superellipse formulae and is capable of producing a variety of shapes
using only a small number of tuning parameters, as demonstrated in figure 4. In two
dimensions, the formula reads

r(θ) =

(∣∣∣∣cos(mθ/4)

a

∣∣∣∣n2

+

∣∣∣∣sin(mθ/4)

b

∣∣∣∣n3
)−1/n1

(3)

Figure 4: Some shapes generated with the Gielis Superformula

As stated earlier, in order to simplify things, we work with double-symmetric shapes
and so we set a = b and n2 = n3 in the above. Even on this simplification, (3) can still
produce a diverse set of shapes.

In order to more easily constrain the size of the particles, we use a modified version
of (3), where we set a = b = 1, and we introduce a zooming factor zf which constrains
the maximum particle dimension in the x− and y− directions. The design vector for this
problem is thus reduced to (m, n1, n2, zf )T , and we developed a particle swarm (PSO)
algorithm in order to solve it.

The PSO algorithm was based on the theory of [25], and included a regrouping feature
as per [26] in order to prevent stagnation at local optima. For completeness, we state that
for all the results reported in the sequel, the cognitive and social factors of the algorithm
were set to 1.5, inertia weight was set to 0.6 and a swarm population of 30 was used.

4 RESULTS AND DISCUSSION

The results of the optimization procedure are illustrated in Figure 5. Note that some of
the topologies shown comprise a background of dielectric with silver inclusions, whereas
others comprise a silver background with dielectric inclusions.
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Figure 5: Convergence history of the optimization algorithm. Note that blue indicates
dielectric; orange indicates silver.

The frequency response of two of the optimized designs, as well as a simple design for
comparison, is shown in Figure 6. The comparative design (Fig. 6a and 6b) possesses a
resonant-type frequency response typical of metamaterials, and reminds us that simple-
shaped metallic inclusions are capable of producing ENZ behaviour, though typically
accompany large losses, indicated by high values of ε′′eff.

The optimized topologies shown in Fig. 6c - 6f also have ENZ behaviour, though with
greatly reduced loss. Interestingly, the frequency response for these designs is not of the
resonant-type; rather they appear akin to Drude curves. Such designs may prove very
useful in applications where exotic behaviour is required over a broad range of frequencies.

5 CONCLUSION AND OUTLOOK

We have shown that by applying shape optimization techniques to the shape of particles
distributed in a matrix, the composite as a whole can possess an electric permittivity
near zero. Compared with simple shapes, the optimized composites demonstrate greatly
reduced energy loss, and have a much more stable frequency response. Accordingly,
we believe such composites may find application in devices which require low-loss ENZ
behaviour over a broad range of frequencies.

It remains to be explored how the internal topology of the particles could affect the
composite performance. In addition, manufacturability constraints should be incorpo-
rated, in an attempt to realise a practical amount of the proposed materials. Such will
be the focus of future studies.
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(a) εeff = 0.00 + 190i (J = 190)
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(c) εeff = 0.01 + 0.13i (J = 0.13)
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(e) εeff = 0.02 + 0.20i (J = 0.20)
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Figure 6: Frequency response of (a-b) Simple comparison shape (c-d) Optimized dielectric
inclusions (e-f) Optimized silver inclusions. The optimized designs demonstrate ENZ
behaviour with very low loss.
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